Bộ đề thi vào 10 môn Toán qua các năm gồm 95 đề thi của các sở trên cả nước. Qua tài liệu này giúp các bạn học sinh có thêm nhiều tư liệu tự học, tự luyện đề để làm quen với cấu trúc đề thi vào 10 môn Toán.
TOP 95 Đề thi vào 10 môn Toán gồm cả đề 100% tự luận và đề trắc nghiệm kết hợp tự luận. Tài liệu này phù hợp cho đối tượng học sinh dự thi THPT không chuyên. Lưu ý 95 đề thi vào lớp 10 môn Toán đều có đáp án giải chi tiết. Các bạn tải file PDF về để xem trọn bộ đề thi và đáp án nhé. Ngoài ra các bạn xem thêm các dạng Toán 9 ôn thi vào lớp 10.
Đề thi vào lớp 10 môn Toán Sở GD&ĐT Hà Nội
Bài I (2,0 điềm )
Với , cho hai biểu thức A=frac{2+sqrt{x}}{sqrt{x}} và B=frac{sqrt{x}-1}{sqrt{x}}+frac{2 sqrt{x}+1}{x+sqrt{x}}
1) Tính giá trị của biểu thức A khi
2) Rút gọn biểu thức B.
3) Tìm x để
Bài II (2,0 điểm) Giải bài toán bằng cách lập phương trình:
Quãng đường từ A đến B dài 90 km. Một người đi xe máy từ A đến B. Khi đến B, người đó nghỉ 30 phút rồi quay trở về A với vận tốc lớn hơn vận tốc lúc đi là 9 km /h. Thời gian kể từ lúc bắt đầu đi từ A đến lúc trở về đến A là 5 giờ. Tính vận tốc xe máy lúc đi từ A đến B.
Bài III (2,0 điểm )
1) Giải hệ phương trình
2) Cho parabol và đường thẳng
a) Với , xác định tọa độ các giao điểm A, B của (d) và (P)
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ sao cho
Bài IV (3,5 điểm)
Cho đường tròn (O) và điểm A nằm bên ngoài (O). Kè hai tiếp tuyến AM, AN với đường tròn (O)(M, N là các tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và không đi qua tâm O).
1) Chứng minh tứ giác AMON nội tiếp.
2) Chứng minh . Tính độ dài đoạn thẳng
3) Gọi I là trung điểm của BC. Đường thẳng NI cắt đường tròn (O) tại điểm thứ hai T. Chứng minh MT // AC
4) Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở K. Chứng minh K thuộc một đường thẳng cố định khi d thay đổi và thỏa mãn điều kiện đề bài
Bài V: 0,5 điểm
Với A, B, c là các số dương thỏa mãn điều kiện Chứng minh
Đề thi vào lớp 10 môn Toán Sở GD&ĐT Đắk Lắk
Phần A. Đề
Câu 1: (1,5 điểm)
1) Rút gọn biểu thức:
2) Chứng minh rằng: ; với và
Câu 2: (2,0 điểm)
1) Giải hệ phương trình:
2) Giải phương trình:
Câu 3: (2,0 điểm)
Cho phương trình (m là tham số)
1) Tìm m để phương trình có nghiệm.
2) Tìm M để phương trình có hai nghiệm sao cho:
Câu 4: (3,5 điểm)
Cho đường tròn O, đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn. Mlà một điểm trên đường tròn M khác A, B. Tiếp tuyến tại M của đường tròn cắt Ax, By lần lượt tại P và Q.
1) Chứng minh rằng: tứ giác APMO nội tiếp
2) Chứng minh rằng :
3) Chứng minh rằng :
4) Khi điểm M di động trên đường tròn O, tìm các vị trí của điểm M sao cho diện tích tứ giác APQB nhỏ nhất
Câu 5: (1,0 điểm)
Cho các số thực x, y thỏa mãn: Tìm giá trị nhỏ nhất của biểu thức:
A=x2+y2+16y+2x
Đề thi vào lớp 10 môn Toán Sở GD&ĐT Đồng Nai
Câu 1: (1,75 điểm)
1) Giải phương trình 2x2 +5x-3=0
2) Giải phương trình: 2x2-5x=0
3) Giải hệ phương trình:
Câu 2: (1,0 điểm)
Cho biểu thức (với và
1) Rút gọn biểu thức A.
2) Tính giá trị biểu thức A tại a=2.
Câu 3: (2,0 điểm)
Cho hai hàm số có đồ thị là có đồ thị là
1) Vẽ hai đồ thị P và d đã cho trên cùng một mặt phẳng tọa độ Oxy.
2) Tìm tọa độ các giao điểm của hai đồ thị P và d đã cho.
Câu 4: (1,0 điểm)
1) Tìm hai số thực x và y thỏa mãn
2) Cho là hai nghiệm của phương trình : . Tính
Câu 5: (1,25 điểm)
Một xưởng có kế hoạch in xong 6000 quyển sách giống nhau trong một thời gian quy định, biết số quyển sách in được trong một ngày là bằng nhau. Để hoàn thành sớm kế hoạch , mỗi ngày xưởng đã in nhiều hơn 300 quyển sách so với số quyển sách phải in trong kế hoạch, nên xưởng in xong 6000 quyển sách nói trên sớm hơn kế hoạch 1 ngày. Tính số quyển sách xưởng in được trong 1 ngày theo kế hoạch.
Câu 6: (3,0 điểm)
Cho tam giác ABC nội tiếp đường tròn (O), bán kính R , BC=a, với a và R là các số thực dương. Gọi I là trung điểm của cạnh BC. Các góc CAB,ABC,BCA đều là góc nhọn.
1) Tính OI theo a và R.
2) Lấy điểm D thuộc đoạn AI, với D khác A, D khác I. Vẽ đường thẳng qua D song song với BC cắt cạnh AB tại điểm E. Gọi F là giao điểm của tia CD và đường tròn (O), với F khác C. Chứng minh tứ giác ADEF là tứ giác nội tiếp đường tròn.
3) Gọi J là giao điểm của tia AI và đường tròn (O) , với J khác A. Chứng minh rằng AB.BJ=AC.CJ
…………….
Nội dung chi tiết 95 đề thi vào 10 môn Toán
Cảm ơn bạn đã theo dõi bài viết Tuyển tập 95 đề thi vào lớp 10 của các sở trên cả nước hệ không chuyên Đề thi vào 10 môn Toán của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.