Bạn đang xem bài viết ✅ Hướng dẫn tìm công thức truy hồi của dãy số Công thức truy hồi ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Công thức truy hồi là những công thức quan trọng giúp các em lớp 11, lớp 12 cần ghi nhớ để vận dụng tính toán nhanh nhất các bài toán truy hồi và cho ra kết quả chính xác.

Trong kì thi THPT Quốc gia môn Toán thì số lượng công thức cần ghi nhớ là không hề nhỏ. Đối với các bài thi trắc nghiệm, điều cần thiết là các em học sinh cần nắm kiến thức rộng và có phương pháp giải nhanh hiệu quả để có thể ghi điểm nhiều nhất. Bên cạnh công thức truy hồi các bạn xem thêm bộ đề ôn thi THPT Quốc gia môn Toán, phân dạng câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán.

1. Nội dung chính tài liệu công thức truy hồi

Dạng 1: Tìm số hạng tổng quát của dãy số (dạng đa thức) khi biết các số hạng đầu tiên

Dạng 2: Dạng cơ sở: Cho dãy (un) biết u1 = a và un+1 = q.un + d ∀ n ≥ 1 với q, d là các hằng số thực

Tham khảo thêm:  

Gồm 4 trường hợp, dạng này được gọi là dạng cơ sở vì:

+ Với 3 trường hợp 1, 2, và 3 dãy số trở thành các dãy đặc biệt đó là: dãy số hằng, cấp số cộng và cấp số nhân. Các dãy số này ta đều đã tìm được công thức của số
hạng tổng quát.

+ Trên cơ sở của 3 dãy này, để giải trường hợp 4: bằng phương pháp đặt một dãy số mới (vn) liên hệ với dãy số (un) bằng một biểu thức nào đó để có thể đưa được về dãy số (vn) mà (vn) dãy số hằng hoặc cấp cộng hoặc cấp số nhân.

+ Vấn đề đặt ra là: Mối liên hệ giữa (un) và (vn) bởi biểu thức nào mới có thể đưa dãy số (vn) thành dãy số hằng hoặc cấp số cộng hoặc cấp số nhân hoặc trường hợp 4.

2. Cách tìm công thức truy hồi

Dạng 1: Tìm số hạng tổng quát của dãy số (dạng đa thức) khi biết các số hạng đầu tiên

Ví du 1.1: Cho dãy số left(u_{n}right) có dạng khai triển sau: 1 ;-1 ;-1 ; 1 ; 5 ; 11 ; 19 ; 29 ; 41 ; 55 ; ……..

Hãy tìm công thức của số hạng tổng quát và tìm số tiếp theo?

Bài giải

Nhận xét: Với 10 số hạng đầu thế này, để tìm ra quy luật biểu diễn là rất khó. Với những cách cho này ta thường làm phương pháp sau:

Đặt:

begin{aligned}
&Delta u_{k}=u_{k+1}-u_{k} \
&Delta^{2} u_{k}=Delta u_{k+1}-Delta u_{k} \
&Delta^{3} u_{k}=Delta^{2} u_{k+1}-Delta^{2} u_{k}
end{aligned}

Ta lập bảng các giá trị Delta u_{k}, Delta^{2} u_{k}, Delta^{3} u_{k} ldots . . nếu đến hàng nào có giá trị không đổi thì dừng lại, sau đó kết luận u_{n} là đa thức bậc 1,2,3, ………….và ta đi tìm đa thức đó.

Tham khảo thêm:  

Dạng 2: Dạng cơ sở:

Cho dãy left(u_{n}right) biết left{begin{array}{l}u_{1}=a \ u_{n+1}=q u_{n}+d, quad n geq 1end{array}right.

Với q,d là các hằng số thực.

GIẢI:

– Trường hợp 1: Nếu q=0 Rightarrowleft{begin{array}{l}u_{1}=a \ u_{n+1}=d, n geq 1end{array}right. Rightarrow u_{1}=a, u_{n}=d, forall n in mathbb{N}^{*}, n geq 2

-Trường hợp 2: Nếu q=1 Rightarrowleft{begin{array}{l}u_{1}=a \ u_{n+1}=u_{n}+d, n geq 1end{array}right.

Rightarrowleft(u_{n}right) là cấp số cộng với số hạng đầu u_{1}=a và công sai bằng d

Rightarrow u_{n}=a+(n-1) d

-Trường hợp 3: Nếu d=0 Rightarrowleft{begin{array}{l}u_{1}=a \ u_{n+1}=q u_{n}, n geq 1end{array}right.

Rightarrowleft(u_{n}right) là cấp số nhân với số hạng đầu u_{1}=a và công bội bằng q

Rightarrow u_{n}=a cdot q^{n-1}

-Trường hợp 4: Nếu q neq 0, q neq 1, d neq 0. Đặt dãy left(v_{n}right) sao cho u_{n}=v_{n}+frac{d}{1-q}(1)

Thay ct(1) vào công thức truy hồi ta có:

begin{aligned}
&v_{n+1}+frac{d}{1-q}=qleft(v_{n}+frac{d}{1-q}right)+d \
&Rightarrow v_{n+1}=q v_{n}, n geq 1
end{aligned}
Rightarrowleft(v_{n}right) là một cấp số nhân với số hạng đầu v_{1}=u_{1}-frac{d}{1-q}=a-frac{d}{1-q} và công bội bằng q

Ví du 2.1: Tìm công thức của số hạng tổng quát của các dãy left(u_{n}right)biết:

1) left{begin{array}{l}u_{1}=-1 \ u_{n+1}=u_{n}+3, n geq 1end{array}right. 2) left{begin{array}{l}u_{1}=1 \ u_{n+1}=2 u_{n}+3, n geq 1end{array}right.
left(right. Ðs: left.u_{n}=3 n-4right)

(Đs: u_{n}=4.2^{n-1}-3 )

Giải:

1) left{begin{array}{l}u_{1}=-1 \ u_{n+1}=u_{n}+3, n geq 1end{array}right.

u_{n+1}=u_{n}+3, n geq 1

Rightarrowleft(u_{n}right)là một cấp số cộng với số hạng đầu u_{1}=-1 và công sai d=3

Rightarrow u_{n}=u_{1}+(n-1) d=-1+3(n-1)=3 n-4

2) left{begin{array}{l}u_{1}=1 \ u_{n+1}=2 u_{n}+3, n geq 1end{array}right.

Nhận xét: Dãy số này có dạng 1 với q=1, d=3

Đặt dãy left(v_{n}right) sao cho:u_{n}=v_{n}+frac{d}{1-q}=v_{n}-3 (1)

Thay (1) vào công thức truy hồi ta được

v_{n+1}-3=2left(v_{n}-3right)+3 Rightarrow v_{n+1}=2 v_{n}

Rightarrowleft(v_{n}right) là cấp số nhân với số hạng đầu v_{1}=u_{1}+3=1+3=4 và công bội q=2

Rightarrow v_{n}=4.2^{n-1}=2^{n+1}

Rightarrow u_{n}=v_{n}-3=2^{n+1}-3

Nhân xét: Câu 1:left{begin{array}{l}u_{1}=-1 \ u_{n+1}=u_{n}+3, n geq 1end{array}right.

Còn có các cách sau:

Cách 2:

Ta có:

begin{aligned}
&u_{1}=-1 \
&u_{2}=u_{1}+3 \
&u_{3}=u_{2}+3
end{aligned}

4.

u_{n}=u_{n-1}+3

Cộng vế với vế các hệ thức trên ta được:

begin{aligned}
&u_{1}+u_{2}+u_{3}+ldots ldots+u_{n}=-1+u_{1}+u_{2}+u_{3}+ldots . .+u_{n-1}+3(n-1) \
&Rightarrow u_{n}=-1+3(n-1) \
&Rightarrow u_{n}=3 n-4
end{aligned}

…………..

Mời các bạn tải File tài liệu để xem thêm về Công thức truy hồi

Cảm ơn bạn đã theo dõi bài viết Hướng dẫn tìm công thức truy hồi của dãy số Công thức truy hồi của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *