Bạn đang xem bài viết ✅ Công thức tính đường cao trong tam giác Công thức tính chiều cao hình tam giác ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Công thức tính đường cao trong tam giác là một trong những kiến thức cơ bản trọng tâm mà các bạn học sinh cấp THCS, THPT cần nắm được để giải các bài toán hình học.

Chính vì vậy trong bài học hôm nay Wikihoc.com giới thiệu đến các bạn thế nào là đường cao trong tam giác, công thức tính đường cao trong tam giác đều, tam giác vuông, tam giác cân, tính chất và một số bài tập tự luyện. Tài liệu được biên soạn rất chi tiết, dễ hiểu để các bạn tham khảo nhanh chóng giải bài tập.

1. Đường cao trong tam giác là gì?

Đường cao của tam giác là đoạn vuông góc kẻ từ một đỉnh đến cạnh đối diện. Cạnh đối diện này được gọi là đáy ứng với đường cao. Độ dài của đường cao là khoảng cách giữa đỉnh và đáy.

  • Cạnh đối diện được gọi là đáy ứng với đường cao đó.
  • Giao điểm giữa đáy và đường cao được gọi là chân của đường cao.
  • Độ dài của đường cao được tính bằng khoảng cách từ đỉnh đến đáy.
  • Trong một tam giác sẽ có 3 đường cao được hạ từ 3 đỉnh của tam giác đó. Ba đường cao này sẽ đồng quy (giao nhau) tại một điểm. Điểm đó được gọi là trực tâm.
  • Trực tâm của tam giác có thể nằm trong (xuất hiện ở tam giác nhọn) hoặc nằm ngoài (ở tam giác tù) hoặc trùng với một đỉnh trong tam giác (xuất hiện ở tam giác vuông).
Tham khảo thêm:   Trắc nghiệm Sinh học 12 Bài 1 Gen, mã di truyền và quá trình nhân đôi ADN

2. Công thức tính đường cao trong tam giác

Có nhiều cách giúp các bạn tính đường cao, cách đơn giản tính đường cao trong tam giác là sử dụng công thức Heron:

{h_a} = 2frac{{sqrt {pleft( {p - a} right)left( {p - b} right)left( {p - c} right)} }}{a}

Với a, b, c là độ dài các cạnh; ha là đường cao được kẻ từ đỉnh A xuống cạnh BC; p là nửa chu vi:

p = frac{{left( {a + b + c} right)}}{2}

3. Công thức tính đường cao tam giác đều

Giả sử tam giác đều ABC có độ dài cạnh bằng a như sau:

Công thức tính đường cao: h = afrac{{sqrt 3 }}{2}

Trong đó: h là đường cao của tam giác đều; a là độ dài cạnh của tam giác đều.

4. Công thức tính đường cao trong tam giác vuông

Giả sử có tam giác vuông ABC vuông tại A như hình sau:

Công thức tính cạnh và đường cao trong tam giác vuông:

1. {a^2} = {b^2} + {c^2}

2. {b^2} = a.b' và {c^2} = a.c'

3. ah = bc

4. {h^2} = b'.c'

5. frac{1}{{{h^2}}} = frac{1}{{{b^2}}} + frac{1}{{{c^2}}}

Trong đó: a, b, c lần lượt là các cạnh của tam giác vuông như hình trên;

b’ là đường chiếu của cạnh b trên cạnh huyền; c’ là đường chiếu của cạnh c trên cạnh huyền;

h là chiều cao của tam giác vuông được kẻ từ đỉnh góc vuông A xuống cạnh huyền BC.

Như vậy các bạn có thể dựa vào các công thức cạnh và đường cao trong tam giác vuông ở trên để giải quyết các bài toán.

Ví dụ:

Cho tam giác ABC vuông tại A, AB=24cm, AC=32cm. Đường trung trực của BC cắt AC, BC theo thứ tự D và E. Tính DE.

Giải:

Xét tam giác vuông ABC, ta có:

BC2 = AB2+ AC2 ( theo định lý py-ta-go)

Tham khảo thêm:   Top 3 sản phẩm tẩy trang Byphasse an toàn lành tính dành cho mọi loại da

BC2 = 242+ 322

BC2 = 1600

BC = 40(cm)

EC = BC : 2 = 40 : 2 = 20(cm)

Xét tam giác vuông ACB và tam giác vuông ECD có:

Có ∠A = ∠E = 90o

∠C chung

=> Tam giác ACB ∾ tam giác ECD (g.g)

=> AC/EC = AB/ED

=> ED = AB.EC/AC = 15cm

Vậy ED = 15cm

5. Công thức tính đường cao trong tam giác cân

Giả sử các bạn có tam giác ABC cân tại A, đường cao AH vuông góc tại H như sau:

Công thức tính đường cao AH:

Vì tam giác ABC cân tại A nên đường cao AH đồng thời là đường trung tuyến nên:

Rightarrow HB = HC = frac{{BC}}{2}

Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

A{H^2} + B{H^2} = A{B^2}

Rightarrow A{H^2} = A{B^2} - B{H^2}

6. Tính chất ba đường cao của một tam giác

Ba đường cao của tam giác cùng đi qua một điểm. Điểm đó gọi là trực tâm của tam giác.

7. Bài tập tính đường cao trong tam giác

Bài 1: Cho tam giác ABC đường cao AH. Vẽ HD ⊥ AB. Tia phân giác của góc AHC cắt AC tại F. Biết AB = 6cm, AC = 8cm, BC = 10 cm. Tính:

a) Độ dài AH

b) Chu vi tam giác ADF

Bài 2: Cho tam giác ABC vuông tại A, AB : AC = 7 : 24, BC = 625 cm. Tính độ dài hình chiếu của hai cạnh góc vuông trên cạnh huyền.

Bài 3: Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 20 cm, BH = 9cm. Tính độ dài BC và AH

Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB/AC = 20/21 và AH = 420. Tính chu vi tam giác ABC

Tham khảo thêm:   Văn mẫu lớp 12: Đoạn văn nghị luận về lý tưởng sống của thanh niên (Dàn ý + 14 Mẫu) Viết đoạn văn về lý tưởng sống

Bài 5: Cho tam giác ABC vuông tại A, đường cao AH

Cho biết AC/AB = √2; HC – HB = 2cm.Tính:

a) Tỉ số HC : HB

b) Các cạnh của tam giác ABC

Bài 6: Cho tam giác nhọn ABC, hai đường cao BD và CE cắt nhau tại H. Trên HB, HC lần lượt lấy các điểm M, N sao cho góc AMC bằng góc ANB bằng 900. Chứng minh rằng AM = AN

Cảm ơn bạn đã theo dõi bài viết Công thức tính đường cao trong tam giác Công thức tính chiều cao hình tam giác của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *