Bạn đang xem bài viết ✅ Bộ 40 đề thi vào lớp 10 môn Toán chọn lọc và hay nhất Đề thi tuyển sinh lớp 10 môn Toán (Có đáp án) ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

40 Đề thi Toán vào lớp 10 chọn lọc là nguồn tư liệu học rất hữu ích giúp giáo viên trong việc biên soạn, định hướng ra đề thi theo hướng phát triển năng lực, giúp các em học sinh lớp 9 trong quá trình học tập cũng như làm bài thi có hiệu quả.

TOP 40 đề thi Toán vào lớp 10 này có đáp án giải chi tiết kèm theo được trình bày khoa học, logic giúp người học dễ hình dung và hiểu rõ kiến thức. Tài liệu này thích hợp với cả các bạn thi vào lớp 10 các trường chuyên hay không chuyên trong cả nước. Vì thế, khi giải được tất cả các bài toán dưới đây chắc chắn sẽ mang về kết quả mong đợi.

Đề thi vào 10 môn Toán – Đề 1

Câu 1: a) Cho biết a =2+sqrt{3}mathrm{b}=2-sqrt{3}. Tính giá trị biểu thức: mathrm{P}=mathrm{a}+mathrm{b}-mathrm{ab}.

b) Giải hệ phương trình: left{begin{array}{l}3 x+y=5 \ x-2 y=-3end{array}right..

Câu 2: Cho biểu thức mathrm{P}=left(frac{1}{mathrm{x}-sqrt{mathrm{x}}}+frac{1}{sqrt{mathrm{x}}-1}right): frac{sqrt{mathrm{x}}}{mathrm{x}-2 sqrt{mathrm{x}}+1}( với mathrm{x}>0, mathrm{x} neq 1)

a) Rút gọn biểu thức P

b) Tìm các giá trị của x để P>frac{1}{2}.

Câu 3: Cho phương trình: mathrm{x}^{2}-5 mathrm{x}+mathrm{m}=0 (m là tham số).

a) Giäi phương trình trên khi mathrm{m}=6.

b) Tim m đề phương trình trên có hai nghiệm mathrm{x}_{1}, mathrm{x}_{2} thỏa mãn: left|mathrm{x}_{1}-mathrm{x}_{2}right|=3.

Câu 4: Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và mathrm{O}). Lấy điềm E trên cung nhỏ BC E khác B và C, AE cắt CD tại F. Chứng minh:

a) BEFI là tứ giác nội tiếp đường tròn.

b)mathrm{AE} cdot mathrm{AF}=mathrm{AC}^{2}

c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp Delta CEF luôn thuộc một đường thẳng cố định.

Tham khảo thêm:  

Câu 5: Cho hai số dương a, b thỏa mãn: mathrm{a}+mathrm{b} leq 2 sqrt{2}. Tìm giá trị nhỏ nhất của biểu thức: quad mathrm{P}=frac{1}{mathrm{a}}+frac{1}{mathrm{~b}}.

Đề thi vào 10 môn Toán – Đề 2

Câu 1: a) Rút gọn biểu thức: frac{1}{3-sqrt{7}}-frac{1}{3+sqrt{7}}.

b) Giải phương trình: x^{2}-7 x+3=0.

Câu 2: a) Tìm tọa độ giao điểm của đường thẳng d: y=-x+2 và Parabol (P): y =x^{2}.

b) Cho hệ phương trình: left{begin{array}{l}4 x+a y=b \ x-b y=aend{array}right.. Tìm a và b đề hệ đã cho có nghiệm duy nhất (mathrm{x} ; mathrm{y})=(2 ;-1) .

Câu 3: Một xe lửa cần vận chuyền một lượng hàng. Người lái xe tính rằng nếu xếp mỗi toa 15 tấn hàng thì còn thừa lại 5 tấn, còn nếu xếp mỗi toa 16 tấn thì có thề chở thêm 3 tấn nữa. Hói xe lửa có mấy toa và phải chở bao nhiêu tấn hàng.

Câu 4: Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ mathrm{MI} perp mathrm{AB}, mathrm{MK} perp mathrm{AC}(mathrm{I} in mathrm{AB}, mathrm{K} in mathrm{AC})

a) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.

b) operatorname{Ver} mathrm{MP} perp mathrm{BC}(mathrm{P} in mathrm{BC}). Chứng minh: mathrm{MPK}=mathrm{MBC}.

c) Xác định vị trí của điểm M  trên cung nhỏ BC đề tích MI.MK.MP đạt giá trị lớn nhất.

Câu 5: Giải phương trình: frac{sqrt{x-2009}-1}{x-2009}+frac{sqrt{y-2010}-1}{y-2010}+frac{sqrt{z-2011}-1}{z-2011}=frac{3}{4}

Đề thi vào lớp 10 môn Toán – Đề 3

Câu 1: Giải phương trình và hệ phương trình sau:

a) x^{4}+3 x^{2}-4=0

b) left{begin{array}{l}2 x+y=1 \ 3 x+4 y=-1end{array}right.

Câu 2: Rút gon các biểu thức:

a) A=frac{sqrt{3}-sqrt{6}}{1-sqrt{2}}-frac{2+sqrt{8}}{1+sqrt{2}}

b) mathrm{B}=left(frac{1}{mathrm{x}-4}-frac{1}{mathrm{x}+4 sqrt{mathrm{x}}+4}right) cdot frac{mathrm{x}+2 sqrt{mathrm{x}}}{sqrt{mathrm{x}}} quad

Câu 3:

a) Vẽ đồ thị các hàm số y = – x2 và y = x – 2 trên cùng một hệ trục tọa độ.

b) Tìm tọa độ giao điểm của các đồ thị đã vẽ ở trên bằng phép tính.

Câu 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Các đường cao BE và CF cắt nhau tại H.

a) Chứng minh: AEHF và BCEF là các tứ giác nội tiếp đường tròn.

b) Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF. Chứng minh: MN // EF.

c) Chứng minh rằng OA  vuông góc EF.

Câu 5: Tìm giá trị nhỏ nhất của biểu thức:

mathrm{P}=mathrm{x}^{2}-mathrm{x} sqrt{mathrm{y}}+mathrm{x}+mathrm{y}-sqrt{mathrm{y}}+1

Đề thi vào lớp 10 môn Toán – Đề 4

Câu 1:

a) Trục căn thức ở mẫu của các biểu thức sau: frac{4}{sqrt{3}} ; frac{sqrt{5}}{sqrt{5}-1}.

b) Trong hệ trục tọa độ mathrm{Oxy}, biết đồ thị hàm số mathrm{y}=mathrm{ax}^{2} đi qua điểm mathrm{M}left(-2 ; frac{1}{4}right). Tìm hệ số a.

Tham khảo thêm:   Cách đăng ký tài khoản Đột Kích (CrossFire) mới nhất

Câu 2: Giải phương trình và hệ phương trình sau:

a) sqrt{2 x+1}=7-x

b) left{begin{array}{l}2 x+3 y=2 \ x-y=frac{1}{6}end{array}right.

Câu 3: Cho phương trình ẩn mathrm{x}: mathrm{x}^{2}-2 mathrm{mx}+4=0 (1)

a) Giải phương trình đã cho khi m = 3

b) Tìm giá trị của m để phương trình (1) có hai nghiêm mathrm{x}_{1}, mathrm{x}_{2} thỏa mãn: left(mathrm{x}_{1}+1right)^{2}+left(mathrm{x}_{2}+1right)^{2}=2.

Câu 4: Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Lấy I thuộc cạnh AB, M thuộc cạnh BC sao cho: mathrm{IEM}=90^{circ} (I và M không trùng với các đỉnh của hình vuông ).

a) Chứng minh rằng BIEM là tứ giác nội tiếp đường tròn.

b) Tính số đo của góc IME

c) Gọi N là giao điểm của tia AM và tia DC ; K là giao điểm của BN và tia EM. Chứng minh mathrm{CK} perp mathrm{BN}

Câu 5: Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:

a b+b c+c a leq a^{2}+b^{2}+c^{2}<2(a b+b c+c a)

Đề thi tuyển sinh lớp 10 môn Toán – Đề 5

Câu 1:

a) Thực hiện phép tính:left(sqrt{frac{3}{2}}-sqrt{frac{2}{3}}right) cdot sqrt{6}

b) Trong hệ trục tọa độ Oxy, biết đường thẳng mathrm{y}=mathrm{ax}+mathrm{b} đi qua điểm A (2 ; 3 ) và điểm B (-2 ; 1) Tìm các hệ số a và b.

Câu 2: Giải các phương trình sau:

a) x^{2}-3 x+1=0

b) frac{x}{x-1}+frac{-2}{x+1}=frac{4}{x^{2}-1}

Câu 3: Hai ô tô khởi hành cùng một lúc trên quãng đường từ A đến B dài 120 km. Mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 0,4 giờ. Tính vận tốc của mỗi ô tô.

Câu 4: Cho đường tròn (O, R) ; AB và CD là hai đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O; R) cắt các đường thẳng mathrm{AC}, mathrm{AD} thứ tự tại E và F.

a) Chứng minh tứ giác mathrm{ACBD} là hình chữ nhật.

b) Chứng minh triangle mathrm{ACD} sim triangle mathrm{CBE}

c) Chứng minh tứ giác CDFE nội tiếp được đường tròn.

d) Gọi mathrm{S}, mathrm{S}_{1}, mathrm{~S}_{2} thứ tự là diện tích của triangle mathrm{AEF}, triangle mathrm{BCE} và triangle mathrm{BDF}. Chứng minh: sqrt{mathrm{S}_{1}}+sqrt{mathrm{S}_{2}}=sqrt{mathrm{S}}.

Câu 5: Giải phương trình:10 sqrt{mathrm{x}^{3}+1}=3left(mathrm{x}^{2}+2right)

Đề thi tuyển sinh lớp 10 môn Toán – Đề 6

Câu 1: Rút gọn các biểu thức sau:

a) mathrm{A}=left(2+frac{3+sqrt{3}}{sqrt{3}+1}right) cdotleft(2-frac{3-sqrt{3}}{sqrt{3}-1}right)

b) mathrm{B}=left(frac{sqrt{mathrm{b}}}{mathrm{a}-sqrt{mathrm{ab}}}-frac{sqrt{mathrm{a}}}{sqrt{mathrm{ab}}-mathrm{b}}right) cdot(mathrm{a} sqrt{mathrm{b}}-mathrm{b} sqrt{mathrm{a}}) quad( với mathrm{a}>0, mathrm{~b}>0, mathrm{a} neq mathrm{b})

Câu 2:

a) Giải hệ phương trình: left{begin{array}{l}x-y=-1 \ frac{2}{x}+frac{3}{y}=2end{array}right. (2)

b) Gọi mathrm{x}_{1}, mathrm{x}_{2} là hai nghiệm của phương trình:mathrm{x}^{2}-mathrm{x}-3=0. Tính giá trị biểu thức: mathrm{P}=mathrm{x}_{1}^{2}+mathrm{x}_{2}^{2}.

Câu 3:

a) Biết đường thẳng mathrm{y}=mathrm{ax}+mathrm{b} đi qua điểm mathrm{M}left(2 ; frac{1}{2}right) và song song với đường thẳng 2 mathrm{x}+mathrm{y}=3. Tìm các hệ số a và b.

b) Tính các kích thước của một hình chữ nhật có diện tích bằng 40 mathrm{~cm}^{2}, biết rằng nếu tăng mỗi kích thước thêm 3 cm thì diện tích tăng thêm 48 cm2

Câu 4: Cho tam giác mathrm{ABC} vuông tại mathrm{A}, mathrm{M} là một điểm thuộc cạnh AC (M khác A và C). Đường tròn đường kính MC cắt BC tại N và cắt tia BM tại I. Chứng minh rằng:

Tham khảo thêm:  

a) ABNM và ABCI là các tứ giác nội tiếp đường tròn.

b) NM là tia phân giác của góc widehat{mathrm{ANI}}.

c) mathrm{BM} . mathrm{BI}+mathrm{CM} cdot mathrm{CA}=mathrm{AB}^{2}+mathrm{AC}^{2}.

Câu 5: Cho biểu thức A=2 x-2 sqrt{x y}+y-2 sqrt{x}+3. Hỏi A có giá trị nhỏ nhất hay không? Vì sao?

Đề thi tuyển sinh lớp 10 môn Toán – Đề 7

Câu 1:

a) Tìm điều kiện của x biểu thức sau có nghĩa: mathrm{A}=sqrt{mathrm{x}-1}+sqrt{3-mathrm{x}}

b) Tính:frac{1}{3-sqrt{5}}-frac{1}{sqrt{5}+1}

Câu 2: Giải phương trình và bất phương trình sau:

a) (x-3)^{2}=4

b) frac{x-1}{2 x+1}<frac{1}{2}

Câu 3: Cho phương trình ẩn x: x^{2}-2 m x-1=0 (1)

a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x_{1}x_{2}.

b) Tìm các giá trị của m để: mathrm{x}^{2}+mathrm{x}^{2}{ }^{2}-mathrm{x}_{1} mathrm{X}_{2}=7.

Câu 4: Cho đường tròn (O ; R) có đường kính AB. Vẽ dây cung CD vuông góc với AB (CD không đi qua tâm O). Trên tia đối của tia BA lấy điểm S, SC cắt (O, R) tại điểm thứ hai là M.

a) Chứng minh triangle mathrm{SMA} đồng dạng với triangle mathrm{SBC}.

b) Gọi H là giao điểm của MA và BC; K là giao điểm của MD và AB. Chứng minh BMHK là tứ giác nội tiếp và mathrm{HK} / / mathrm{CD}.

c) Chứng minh: mathrm{OK} . mathrm{OS}=mathrm{R}^{2}.

Câu 5: Giải hệ phương trình: left{begin{array}{l}x^{3}+1=2 y \ y^{3}+1=2 xend{array}right..

Đề thi Toán vào lớp 10 – Đề 8

Câu 1:

a) Giải hệ phương trình: left{begin{array}{l}2 x+y=5 \ x-3 y=-1end{array}right.

b) Gọi mathrm{x}_1, mathrm{x}_2 là hai nghiệm của phương trình: 3 mathrm{x}^2-mathrm{x}-2=0. Tính giá trị biểu thức: quad mathrm{P}= frac{1}{x_1}+frac{1}{x_2}

Câu 2: Cho biểu thức mathrm{A}=left(frac{sqrt{mathrm{a}}}{sqrt{mathrm{a}}-1}-frac{sqrt{mathrm{a}}}{mathrm{a}-sqrt{mathrm{a}}}right): frac{sqrt{mathrm{a}}+1}{mathrm{a}-1} quad với mathrm{a}>0, mathrm{a} neq 1

a) Rút gọn biểu thức A

b) Tìm các giá trị của a để A<0.

Câu 3: Cho phương trình ẩn x: x^2-x+1+m=0(1)

a) Giải phương trình đã cho với m=0.

b) Tìm các giá trị của m để phương trình (1) có hai nghiệm mathrm{x}_1, mathrm{x}_2 thỏa mãn: quad mathrm{x}_1 mathrm{x}_2 cdotleft(mathrm{x}_1 mathrm{x}_2-2right)= 3left(x_1+x_2right).

Câu 4: Cho nửa đường tròn tâm O đường kính mathrm{AB}=2 mathrm{R} và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên {Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; AB cắt nửa đường tròn O) tại D, D khác B).

a) Chứng minh: AMCO và AMDE là các tứ giác nội tiếp đường tròn.

b) Chứng minh widehat{mathrm{ADE}}=widehat{mathrm{ACO}}.

c) Vẽ CH vuông góc với mathrm{AB}(mathrm{H} in mathrm{AB}). Chứng minh rằng MB đi qua trung điểm của CH.

Câu 5: Cho các số mathrm{a}, mathrm{b}, mathrm{c} in[0 ; 1]. Chứng minh rằng:mathrm{a}+mathrm{b}^2+mathrm{c}^3-mathrm{ab}-mathrm{bc}-mathrm{ca} leq 1.

………….

Tải file tài liệu để xem thêm đề thi Toán vào lớp 10

………………

Mời các bạn tải file tài liệu để xem thêm nội dung chi tiết

Cảm ơn bạn đã theo dõi bài viết Bộ 40 đề thi vào lớp 10 môn Toán chọn lọc và hay nhất Đề thi tuyển sinh lớp 10 môn Toán (Có đáp án) của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *