Bạn đang xem bài viết ✅ Công thức tính diện tích tam giác Diện tích tam giác vuông, đều, cân ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Tam giác là một hình cơ bản và khá thường nhật trong hình học, là hình gồm ba điểm không thẳng hàng và ba cạnh là ba đoạn thẳng nối các đỉnh với nhau.

Vậy công thức tính diện tích tam giác là gì? Diện tích tam giác đều, diện tích tam giác vuông tính như thế nào? Mời các bạn hãy cùng Wikihoc.com theo dõi bài viết dưới đây nhé.

I. Công thức tính diện tích tam giác

1. Tính diện tích tam giác thường

Tam giác ABC có ba cạnh a, b, c, ha là đường cao từ đỉnh A như hình vẽ:

a. Công thức chung

Diện tích tam giác bằng ½ tích của chiều cao hạ từ đỉnh với độ dài cạnh đối diện của đỉnh đó.

Công thức tính diện tích tam giác chung

Ví dụ:

Tính diện tích hình tam giác có độ dài đáy là 5m và chiều cao là 24dm.

Giải: Chiều cao 24dm = 2,4m

Diện tích tam giác là

S=frac{5times2.4}{2}=6 m^2

Xem thêm: Công thức tính diện tích hình vuông

b. Tính diện tích tam giác khi biết một góc

Diện tích tam giác bằng ½ tích hai cạnh kề với sin của góc hợp bởi hai cạnh đó trong tam giác.

Công thức tính diện tích tam giác khi biết một góc

Ví dụ:

Tam giác ABC có cạnh BC = 7, cạnh AB = 5, góc B bằng 60 độ. Tính diện tích tam giác ABC?

Tham khảo thêm:   Toán lớp 5: Cộng hai số thập phân trang 49 Giải Toán lớp 5 trang 49, 50

c. Tính diện tích tam giác khi biết 3 cạnh bằng công thức Heron.

Sử dụng công thức Heron đã được chứng minh:

Công thức Heron

Với p là nửa chu vi tam giác:

Công thức nửa chu vi tam giác

Có thể viết lại bằng công thức:

Công thức Heron tính diện tích tam giác

Ví dụ:

Tính diện tích hình tam giác có độ dài cạnh AB = 8, AC = 7, CB = 9

Giải:

Nửa chu vi tam giác ABC là

p=frac{AB + AC +BC}{2}=frac{8 + 7 + 9}{2}=12

Áp dụng công thức hero ta có

S = sqrt{pleft(p-ABright)left(p-ACright)left(p-BCright)}

=sqrt{12left(12-8right)left(12-7right)left(12-9right)}

=12sqrt{5}

d. Tính diện tích bằng bán kính đường tròn ngoại tiếp tam giác (R).

Công thức tính diện tích bằng bán kính đường tròn ngoại tiếp tam giác

Cách khác:

S_{ABC} = 2.R^{2}.sinhat{A}.sinhat{B}.sinhat{C}

Lưu ý: Cần phải chứng minh được R là bán kính đường tròn ngoại tiếp tam giác.

Ví dụ:

Cho tam giác ABC, độ dài các cạnh a = 6, b = 7, c = 5, R = 3 (R là bán kính đường tròn ngoại tiếp tam giác ABC). Tính diện tích của tam giác ABC.

Giải:

S=frac{abc}{4R}= frac{6times7times5}{4times3sqrt{2}}=frac{210}{12sqrt{2}}=frac{35sqrt{2}}{4}

e. Tính diện tích bằng bán kính đường tròn nội tiếp tam giác (r).

Công thức tính diện tích bằng bán kính đường tròn nội tiếp tam giác

  • p: Nửa chu vi tam giác.
  • r: Bán kính đường tròn nội tiếp.

Ví dụ: Tính diện tích tam giác ABC biết độ dài các cạnh AB = 20, AC = 21, BC = 15, r = 5 (r là bán kính đường tròn nội tiếp tam giác ABC).

Giải:

Nửa chu vi tam giác là:

p=frac{AB + AC +BC}{2}=frac{20+21+15}{2}=28

r= 5

Diện tích tam giác là:

S=ptimes r=28times5=140

2. Tính diện tích tam giác cân

Tam giác cân ABC có ba cạnh, a là độ dài cạnh đáy, b là độ dài hai cạnh bên, ha là đường cao từ đỉnh A như hình vẽ:

Áp dụng công thức tính diện tích thường, ta có công thức tính diện tích tam giác cân:

Công thức tính diện tích tam giác cân

3. Tính diện tích tam giác đều

Tam giác đều ABC có ba cạnh bằng nhau, a là độ dài các cạnh như hình vẽ:

Áp dụng định lý Heron để suy ra, ta có công thức tính diện tích tam giác đều:

Công thức tính diện tích tam giác đều

Xem thêm: Công thức tính chu vi, diện tích tam giác

4. Tính diện tích tam giác vuông

Tam giác ABC vuông tại B, a, b là độ dài hai cạnh góc vuông:

Tham khảo thêm:   Văn mẫu lớp 9: Nghị luận xã hội về giá trị của thời gian 3 Dàn ý & 22 bài văn nghị luận lớp 9 hay nhất

Áp dụng công thức tính diện tích thường cho diện tích tam giác vuông với chiều cao là 1 trong 2 cạnh góc vuông và cạnh đáy là cạnh còn lại.

Công thức tính diện tích tam giác vuông:

Công thức tính diện tích tam giác vuông

5. Tính diện tích tam giác vuông cân

Tam giác ABC vuông cân tại A, a là độ dài hai cạnh góc vuông:

Áp dụng công thức tính diện tích tam giác vuông cho diện tích tam giác vuông cân với chiều cao và cạnh đáy bằng nhau, ta có công thức:

Tính diện tích tam giác vuông cân

II. Các dạng bài tập về diện tích hình tam giác

Dạng 1: Tính diện tích tam giác khi biết độ dài đáy và chiều cao

Ví dụ 1: Tính diện tích tam giác thường và tam giác vuông có:

a) Độ dài đáy bằng 32cm và chiều cao bằng 25cm.

b) Hai cạnh góc vuông có độ dài lần lượt là 3dm và 4dm.

Bài làm

a) Diện tích hình tam giác là:

32 x 25 : 2 = 400 (cm2)

b) Diện tích hình tam giác là:

3 x 4 : 2 = 6 (dm2)

Đáp số: a) 400cm2

b) 6dm2

Dạng 2: Tính độ dài đáy khi biết diện tích và chiều cao

+ Từ công thức tính diện tích, ta suy ra công thức tính độ dài đáy: a = S x 2 : h

Ví dụ 1: Tính độ dài cạnh đáy của hình tam giác có chiều cao bằng 80cm và diện tích bằng 4800cm2.

Bài làm

Độ dài cạnh đáy của hình tam giác là:

4800 x 2 : 80 = 120 (cm)

Đáp số: 120cm

Ví dụ 2: Cho hình tam giác có diện tích 5/8m2 chiều cao là 1/2 m. Tính độ dài cạnh đáy của tam giác đó?

Bài làm

Độ dài cạnh đáy của tam giác là:

frac{5}{8} times 2:frac{1}{2} = frac{{20}}{8} = frac{5}{2}(m)

Đáp số: 5/2m

Dạng 3: Tính chiều cao khi biết diện tích và độ dài đáy

+ Từ công thức tính diện tích, ta suy ra công thức tính chiều cao: h = S x 2 : a

Tham khảo thêm:   Bộ đề thi học kì 1 môn Tiếng Anh lớp 3 năm 2022 - 2023 (Sách mới) 4 Đề kiểm tra học kì 1 lớp 3 môn Tiếng Anh (Có đáp án)

Ví dụ 1: Tính chiều cao của hình tam giác có độ dài cạnh đáy bằng 50cm và diện tích bằng 1125cm2.

Bài làm

Chiều cao của hình tam giác là:

1125 x 2 : 50 = 45 (cm)

Đáp số: 45cm

Dạng bài tập nâng cao

Cho tam giác AOB vuông tại O với đường cao OM (h.131). Hãy giải thích vì sao ta có đẳng thức:

AB.OM = OA.OB

Bài 17

Gợi ý đáp án:

Ta có cách tính diện tích tam giác AOB với đường cao OM và cạnh đáy AB:

S = dfrac{{OM.AB}}{2}

Ta lại có cách tính diện tích tam giác AOB vuông với hai cạnh góc vuông OA, OB là

S = dfrac{{OA.OB}}{2}

Rightarrow dfrac{{OM.AB}}{2} = dfrac{{OA.OB}}{2},(=S)

Rightarrow OM.AB = OA.OB.

III. Bài tập tự luyện diện tích tam giác

Câu 1:

Tính diện tích hình tam giác có:

a) Độ dài đáy là 32cm và chiều cao là 22cm;

b) Độ dài đáy là 2,5 cm và chiều cao là 1,2cm;

Câu 2:

Tính diện tích hình tam giác có:

a) Độ dài đáy là 45cm và chiều cao là 2,4dm;

b) Độ dài đáy là 1,5 m và chiều cao là 10,2dm;

Câu 3:

Tính diện tích hình tam giác có:

a) Độ dài đáy là 3/4m và chiều cao là 1/2m;

b) Độ dài đáy là 4/5 m và chiều cao là 3,5 dm;

Câu 4:

Tính diện tích hình tam giác vuông có độ dài 2 cạnh góc vuông lần lượt là:

a) 35cm và 15 cm.

b) 3,5 m và 15 dm.

Câu 5:

Tính diện tích hình tam giác MDC. Biết hình chữ nhật ABCD có AB = 25 cm, BC = 16cm.

Câu 6:

Tính diện tích hình tam giác MDN. Biết hình vuông ABCD có cạnh 20cm và AM = MB , BN = NC.

Trên đây là toàn bộ công thức, cách tính diện tích tam giác thường, diện tích tam giác đều, cách tính diện tích tam giác vuông cân…. Hy vọng qua tài liệu này các bạn có thêm nhiều gợi ý ôn tập, củng cố kiến thức để biết cách giải các bài tập về tam giác.

Cảm ơn bạn đã theo dõi bài viết Công thức tính diện tích tam giác Diện tích tam giác vuông, đều, cân của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *