Bạn đang xem bài viết ✅ Chuyên đề Hệ thức lượng trong tam giác vuông Bài tập hệ thức lượng trong tam giác vuông ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Hệ thức lượng trong tam giác vuông là một trong những kiến thức trọng tâm trong chương trình Toán 9 và cũng là tài liệu vô cùng hữu ích không thể thiếu dành cho các học sinh lớp 9 chuẩn bị thi vào 10 tham khảo.

Hệ thức lượng trong tam giác vuông bao gồm đầy đủ lý thuyết, công thức và các dạng bài tập có đáp án kèm theo. Qua đó giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản để đạt được điểm số cao trong kì thi vào lớp 10 môn Toán. Bên cạnh bài tập về đường tròn các bạn xem thêm: các định lý Hình học 9, chuyên đề quỹ tích ôn thi vào lớp 10.

Chuyên đề Hệ thức lượng trong tam giác vuông

A. KIẾN THỨC

I. HỆ THỨC LỰ̛̣G TRONG TAM GIÁC VUÔNG:

1. Một số hệ thức:

1) c^{2}=a c^{prime}, b^{2}=a b

2) h^{2}=b cdot c,

3) a h=b c

4) frac{1}{h^{2}}=frac{1}{b^{2}}+frac{1}{c^{2}}

5) a^{2}=b^{2}+c^{2}

-Với tam giác đều cạnh là a ta có:mathrm{h}=frac{mathrm{a} sqrt{3}}{2} ; quad mathrm{S}=frac{mathrm{a}^{2} sqrt{3}}{4}

2. Ví dụ:

VD1. Cho tam giác ABC có AB>AC, kẻ trung tuyến AM và đường cao AH. Chứng minh:

a) mathrm{AB}^{2}+mathrm{AC}^{2}=2 mathrm{AM}^{2}+frac{mathrm{BC}^{2}}{2}

b) mathrm{AB}^{2}-mathrm{AC}^{2}=2 mathrm{BC} cdot mathrm{MH}

3. Bài tập cơ bản:

1.Cho tam giác ABC vuông cân tại A trung tuyến BD. Gọi I là hình chiếu của C trên BD, H là hình chiếu của I trên AC.

Tham khảo thêm:   GDCD 8 Bài 1: Tự hào về truyền thống dân tộc Việt Nam Giáo dục công dân lớp 8 trang 5 sách Chân trời sáng tạo

Chứng minh: mathrm{AH}=3 mathrm{HI}.

2. Qua đỉnh A của hình vuông ABCD cạnh bằng a vẽ một đường thẳng cắt BC ở E và cắt đường thẳng DC ở F.

Chứng minh:frac{1}{mathrm{AE}^{2}}+frac{1}{mathrm{AF}^{2}}=frac{1}{mathrm{a}^{2}}

II. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN:

1. Định nghĩa:

2. Tính chất:

– Một số hệ thức lượng giác cơ bản:

sin ^{2} alpha+cos ^{2} alpha=1 ; quad operatorname{tg} alpha cdot operatorname{cotg} alpha=1 ; quad operatorname{tg} alpha=frac{sin alpha}{cos alpha} ; quad operatorname{cotg} alpha=frac{cos alpha}{sin alpha}

– Chú ý:

+) 0<sin alpha<1 ; quad 0<cos alpha<1;

+) Khi góc alpha tăng từ 0^{circ} đến 90^{circ} thì sin alphaoperatorname{tg} alpha tăng còn cos alpha và operatorname{cotg} alpha giảm.

+) Nếu hai góc phụ nhau thì sin của góc này bằng cos của góc kia, tg của góc này bằng cotg của góc kia và ngược lại.

sin alpha=cos beta ; quad cos alpha=sin beta ; quad operatorname{tg} alpha=operatorname{cotg} beta ; quad operatorname{cotg} alpha=operatorname{tg} beta

+) Tỉ số lượng giác của 3 góc đặc biệt.

3. Bài tập:

Bài 1: Cho tam giác ABC vuông tại A , AB=4 cm; BC=6cm. Tính các TSLG của góc B và góc C.

Nhận xét: Tam giác vuông khi biết độ dài 2 cạnh ta thường dùng định lí Py-ta-go tính cạnh còn lại. Sau đó dùng định nghĩa TSLG để tính các TSLG của góc nhọn.

Bài 2: Chứng minh rằng sin alpha<operatorname{tg} alpha; và cos alpha<operatorname{cotg} alpha.

HD: Xét tam giác ABC vuông tại mathrm{A}, mathrm{B}=alpha.

sin B=frac{A C}{B C} ; operatorname{tg} B=frac{A C}{A B}

…………..

Cảm ơn bạn đã theo dõi bài viết Chuyên đề Hệ thức lượng trong tam giác vuông Bài tập hệ thức lượng trong tam giác vuông của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *