Bạn đang xem bài viết ✅ Bộ đề thi học kì 2 môn Toán lớp 7 năm 2022 – 2023 (Sách mới) 16 Đề kiểm tra học kì 2 Toán 7 (Có ma trận, đáp án) ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Đề thi cuối kì 2 Toán 7 năm 2022 – 2023 tuyển chọn 16 đề kiểm tra cuối kì 2 có đáp án chi tiết và bảng ma trận đề thi.

TOP 16 Đề thi học kì 2 Toán 7 được xây dựng với cấu trúc đề rất đa dạng, bám sát nội dung chương trình học trong sách giáo khoa lớp 7 tập 2 Cánh diều, Chân trời sáng tạo và Kết nối tri thức với cuộc sống. Đề kiểm tra học kì 2 Toán 7 sẽ giúp các em rèn luyện những kĩ năng cần thiết và bổ sung những kiến thức chưa nắm vững để chuẩn bị kiến thức thật tốt. Đồng thời đây là tư liệu hữu ích cho các thầy giáo, cô giáo và các bậc phụ huynh giúp cho con em học tập tốt hơn. Bên cạnh đó các bạn xem thêm bộ đề thi học kì 2 môn Ngữ văn 7, bộ đề thi học kì 2 Tiếng Anh 7.

TOP 16 Đề thi học kì 2 Toán 7 năm 2022 – 2023 (3 Sách)

  • Đề thi cuối kì 2 Toán 7 Chân trời sáng tạo
  • Đề thi cuối kì 2 Toán 7 Cánh diều 
  • Đề thi cuối kì 2 Toán 7 Kết nối tri thức

Đề thi cuối kì 2 Toán 7 Chân trời sáng tạo

Đề thi học kì 2 Toán 7

PHÒNG GD&ĐT…….

TRƯỜNG THCS………..

ĐỀ THI HỌC KÌ 2 NĂM 2022 – 2023

MÔN: TOÁN 7 CTST

Thời gian làm bài 90 phút

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN (2,0 điểm)

Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây:

Câu 1. Biết x, y là hai đại lượng tỉ lệ nghịch và khi x = 3 thì y = –15 . Hệ số tỉ lệ nghịch của y đối với x là:

A. –5;
B. –45;
C. 45;
D. 5.

Câu 2. Cho frac{x}{3}=frac{y}{-2} và x – y = 10, khi đó:

A. x = –6; y = 4;
B. x = 30; y = –20;
C. x = –30; y = 20;
D. x = 6; y = –4.

Câu 3. Tích của hai đơn thức xy và 3x2 bằng

A. 3x3;
B. 3x3y;
C.3xy2;
D. 3x2y.

Câu 4. Giá trị của biểu thức A = x2 – y2 + z2 tại x = –1, y = 1 và z = –1 là

A. –1;
B. 1;
C. –2;
D. 3.

Câu 5. Trong các bộ ba độ dài đoạn thẳng dưới đây, bộ ba nào có thể là độ dài ba cạnh của một tam giác?

A. 7 cm; 9 cm; 18 cm;
B. 2 cm; 5 cm; 7 cm;
C. 1 cm; 7 cm; 9 cm;
D. 6 cm; 11 cm; 13 cm.

Câu 6. Cho tam giác DEF cówidehat{D} = widehat{E}=110°,Độ dài các cạnh của ∆DEF sắp xếp theo thứ tự tăng dần là

A. DE; EF; DF;
B. DE; DF; EF;
C. EF; DE; DF;
D. EF; DF; DE.

Câu 7. Trong một tam giác, tâm của đường tròn tiếp xúc ba cạnh của tam giác là

A. giao điểm của ba đường trung tuyến.
B. giao điểm của ba đường trung trực.
C. giao điểm của ba đường phân giác.
D. giao điểm của ba đường cao.

Câu 8. Một chuồng thỏ nhốt 10 con thỏ trắng và 8 thỏ xám, lấy ngẫu nhiên 4 con thỏ từ chuồng thỏ trên, biến cố nào sau đây có thể xảy ra?

A. “Lấy được 3 thỏ trắng và 2 thỏ xám”.
B. “Lấy được 4 thỏ trắng và 1 thỏ xám”.
C. “Lấy được nhiều nhất 4 thỏ xám”.
D. “Lấy được ít nhất 5 thỏ trắng”.

PHẦN II. TỰ LUẬN (8,0 điểm)

Bài 1. (1,0 điểm) Tìm x, biết:

text { a) } frac{-2 frac{1}{10}}{2 frac{1}{15}}=frac{x-1}{-4} text {; }

b) 2x(3x – 1) – 6x(x + 2) = 42.

Bài 2. (2,0 điểm)Cho hai đa thức: A(x) = x4 + 5x3 – 6x + 2x2 + 10x – 5x3 + 1;

B(x) = x4 – 2x3 + 2x2 + 6x3 + 1.

a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến.

b) Tìm đa thức M(x) sao cho A(x) = B(x) + M(x).

c) Tìm nghiệm của đa thức M(x).

Bài 3. (1,0 điểm) Trong buổi trồng cây gây rừng, mỗi học sinh lớp 7A trồng được 12 cây, mỗi học sinh lớp 7B trồng được 14 cây. Hỏi mỗi lớp có bao nhiêu học sinh tham gia trồng cây? Biết rằng cả hai lớp có 78 học sinh tham gia trông cây và số cây trồng được của hai lớp bằng nhau.

Bài 4. (1,0 điểm) Bạn Mai có một hộp bút đựng hai chiếc bút màu xanh và 1 chiếc bít màu đỏ. Bạn Mai lấy ngẫu nhiên một chiếc bút từ hợp cho bạn Huy mượn. Xét các biến cố sau:

A: “Mai lấy được chiếc bút màu đỏ”;

B: “Mai lấy được chiếc bút màu xanh”.

C: “Mai lấy được chiếc bút màu đen”.

“Mai lấy được chiếc bút màu đỏ hoặc màu xanh”.

a) Trong các biến cố trên, hãy chỉ ra biến cố không thể, biến cố chắc chắn.

b) Tính xác suất của biến cố ngẫu nhiên có trong các biến cố trên.

Bài 5. (2,5 điểm) Cho tam giác ABC vuông tại A, đường trung tuyến CM. Trên tia đối của tia MC lấy điểm D sao cho MD = MC.

a) Chứng minh rằng DMAC = D

b) Chứng minh rằng AC + BC > 2CM.

c) Gọi K là điểm trên đoạn thẳng AM sao cho A K = 2/3 A/M . Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. Chứng minh rằng CD = 3ID.

Đề thi cuối kì 2 Toán 7 Cánh diều

Đề thi cuối kì 2 Toán 7

PHÒNG GD&ĐT…….

TRƯỜNG THCS………..

ĐỀ THI HỌC KÌ 2 NĂM 2022 – 2023

MÔN: TOÁN 7

Sách CÁNH DIỀU

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN (3,0 điểm)

Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây:

Câu 1. Tung hai con xúc xắc màu xanh và đỏ rồi quan sát số chấm xuất hiện trên mặt hai con xúc xắc. Xét biến cố A: “Số chấm trên mặt hai con xúc xắc bằng nhau”. Khẳng định nào sau đây là đúng?

Tham khảo thêm:   Phân tích khổ 5 bài thơ Sóng của Xuân Quỳnh (Dàn ý + 3 Mẫu) Phân tích Sóng khổ 5

A. Biến cố A là biến cố không thể;
B. Biến cố A là biến cố chắc chắn;
C. Biến cố A là biến cố ngẫu nhiên;
D. Cả A, B, C đều đúng.

Câu 2. Một chiếc bình thủy tinh đựng 1 ngôi sao giấy màu tím, 1 ngôi sao giấy màu xanh, 1 ngôi sao giấy màu vàng, 1 ngôi sao giấy màu đỏ. Các ngôi sao có kích thước và khối lượng như nhau. Lấy ngẫu nhiên 1 ngôi sao từ trong bình. Cho biến cố Y: “Lấy được 1 ngôi sao màu tím hoặc màu đỏ”. Xác suất của biến cố Y là

A. frac{1}{4}
B. frac{1}{2}
C. frac{1}{5}

D. 1.

Câu 3. Cho các dãy dữ liệu:

(1) Tên của mỗi bạn học sinh trong lớp 7A.

(2) Số lượng học sinh của các lớp 7 đạt điểm 10 thi giữa học kì I.

(3) Số nhà của mỗi bạn học sinh lớp 7B.

(4) Số lượng nhóm nhạc yêu thích của mỗi bạn học sinh trong lớp.

Trong các dãy dữ liệu trên, dãy dữ liệu không phải là số là

A. (1);
B. (2);
C. (3);
D. (4).

Câu 4. Biểu đồ dưới đây cho biết tỉ lệ các loại kem bán được trong một ngày của một cửa hàng kem.

Biết rằng một ngày cửa hàng đó bán được 100 cái kem. Số lượng kem ốc quế bán được trong một ngày là bao nhiêu?

A. 20 cái;
B. 25 cái;
C. 30 cái;
D. 35 cái.

Câu 5. Một người đi bộ trong x (giờ) với vận tốc 4 (km/h) và sau đó đi bằng xe đạp trong y (giờ) với vận tốc 18 (km/h). Biểu thức đại số biểu thị tổng quãng đường đi được của người đó là

A. 4(x + y);
B. 22(x + y);
C. 4y + 18x;
D. 4x + 18y.

Câu 6. Giá trị của biểu thức A = –(2a + b) tại a = 1; b = 3 là

A. A = 5;
B. A = –5;
C. A = 1;
D. A = –1.

Câu 7. Hệ số tự do của đa thức 10 – 9x2 – 7x5 + x6 – x4

A. –1;
B. –7;
C. 1;
D. 10.

Câu 8. Cho đa thức A(t) = 2t2 – 3t + 1. Phần tử nào trong tập hợp {‒1; 0; 1; 2} là nghiệm của A(t)?

A. ‒1;
B. 0;
C. 1;
D. 2.

Câu 9. Trong một tam giác, đối diện với cạnh nhỏ nhất là một

A. góc nhọn;
B. góc vuông;
C. góc tù;
D. góc bẹt.

Câu 10. Cho tam giác ABC có widehat{A}=35°,widehat{B} =45°. Số đo góc C là:

A.70°;
B. 80°;
C. 90°;
D. 100°.

Câu 11. Bộ ba số đo nào dưới đây có thể là độ dài ba cạnh của một tam giác?

A. 7 cm, 3 cm, 4 cm;
B. 7 cm, 3 cm, 5 cm;
C. 7 cm, 3 cm, 2 cm;
D. 7 cm, 3 cm, 3 cm.

Câu 12. Trong một tam giác, trực tâm là giao điểm của ba đường nào?

A. Đường phân giác;
B. Đường trung tuyến;
C. Đường trung trực;
D. Đường cao.

PHẦN II. TỰ LUẬN (7,0 điểm)

Bài 1. (1,5 điểm) Biểu đồ dưới đây biểu diễn lượng mưa (đơn vị: mm) của hai tỉnh Lai Châu và Cà Mau trong các năm 2016 – 2020.

(Nguồn: Tổng cục Thống kê)

a) Tính tổng lượng mưa tại mỗi tỉnh Lai Châu và Cà Mau trong giai đoạn 2016 – 2020.

b) Năm 2017, lượng mưa tại Cà Mau bằng bao nhiêu phần trăm lượng mưa tại Lai Châu (làm tròn kết quả với độ chính xác 0,005)?

c) Chọn ngẫu nhiên 1 năm trong 5 năm đó. Tính xác suất của các biến cố sau:

A: “Tại năm được chọn, lượng mưa ở Cà Mau cao hơn ở Lai Châu”;

B: “Tại năm được chọn, lượng mưa ở Cà Mau thấp hơn 25 m”;

Bài 2. (2,0 điểm) Cho biết A(x) – (9x3 + 8x2 – 2x – 7) = –9x3 – 8x2 + 5x + 11.

a) Tìm đa thức A(x).

b) Xác định bậc và hệ số cao nhất của đa thức A(x).

c) Tìm đa thức M(x) sao cho M(x) = A(x).B(x) biết B(x) = –x2 + x.

d) Tính M(‒1), từ đó kết luận số ‒1 có phải là nghiệm của đa thức M(x) hay không.

Bài 3. (3,0 điểm) Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trên tia BA lấy điểm F sao cho BF = BC. Kẻ tia BD là tia phân giác của góc ABC (D thuộc AC). Chứng minh rằng:

a) ∆ABD = ∆EBD từ đó suy ra AD = ED.

b) BD là đường trung trực của đoạn thẳng AE và AD < DC.

c) Ba điểm E, D, F thẳng hàng.

Bài 4. (0,5 điểm) Xác định các hằng số a và b sao cho đa thức x 4 + ax 2 + b chia hết cho đa thức x 2 – x + 1.

Đáp án đề thi học kì 2 Toán 7

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN (3,0 điểm)

Bảng đáp án:

Câu 1 2 3 4 5 6 7 8 9 10 11 12
Đáp án C B A B D A D C A D B D

II, PHẦN TỰ LUẬN 

Bài 1. (1,5 điểm)

a) Tổng lượng mưa tại mỗi tỉnh Lai Châu trong giai đoạn 2016 – 2020 là:

2 186 + 3 179 + 2 895 + 2 543 + 2 702 = 13 505 (mm).

Tổng lượng mưa tại mỗi tỉnh Cà Mau trong giai đoạn 2016 – 2020 là: frac{2175}{3179}.100%approx68,42%

2 304 + 2 175 + 2 008 + 2 263 + 2 395 = 11 145 (mm).

b) Năm 2017, lượng mưa tại Cà Mau và Lai Châu lần lượt là 2 175 mm và 3 179 mm.

Trong năm 2017, lượng mưa tại Cà Mau bằng số phần trăm lượng mưa tại Lai Châu là: .

c) • Quan sát biểu đồ trên thấy có 1 năm mà lượng mưa ở Cà Mau cao hơn lượng mưa ở Lai Châu là: năm 2016.

Vì chọn ngẫu nhiên một năm nên xác suất của biến cố A: “Tại năm được chọn lượng mưa ở Cà Mau cao hơn ở Lai Châu” là P(A) = 1/5.

• Ta có: 25 m = 25 000 mm.

Quan sát biểu đồ ta thấy tất cả các năm 2016, 2017, 2018, 2019, 2020 đều có lượng mưa ở Cà Mau thấp hơn 25 000 mm.

Do đó biến cố B: “Tại năm được chọn, lượng mưa ở Cà Mau thấp hơn 25 m” là biến cố chắc chắn nên P(B) = 1.

Vậy P(A) = 1/5, P(B) = 1.

Bài 2. (2,0 điểm)

a) Ta có A(x) = –9x3 – 8x2 + 5x + 11 + (9x3 + 8x2 – 2x – 7)

A(x) = –9x3 – 8x2 + 5x + 11 + 9x3 + 8x2 – 2x – 7

A(x) = 3x + 4

b) Đa thức A(x) có bậc là 1 và hệ số cao nhất là 3.

c) M(x) = A(x).B(x)

M(x) = (3x + 4).(–x2 + x)

= 3x.(–x2 + x) + 4(–x2 + x)

= –3x3 + 3x2 – 4x2 + 4x

= –3x3 – x2 + 4x.

d) M(‒1) = –3.(‒1)3 – (‒1)2 + 4.(‒1) = 3 – 1 – 4 = ‒2 ≠ 0.

Tham khảo thêm:   Tập làm văn lớp 2: Giới thiệu về cuốn sách em yêu thích Sơ đồ tư duy & 12 đoạn văn mẫu lớp 2

Vậy số ‒1 không là nghiệm của đa thức M(x).

Bài 3. (3,0 điểm)

a) Xét DABD và DEBD có:

BA = BE (giả thiết);

widehat{ABD} = widehat{BBD}(do BD là tia phân giác của góc ABC);

BD là cạnh chung.

Do đó ∆ABD = ∆EBD (c.g.c)

Suy ra AD = ED (hai cạnh tương ứng).

b) • Do BA = BE nên B nằm trên đường trung trực của AE.

Do AD = ED nên D nằm trên đường trung trực của AE.

Suy ra BD là đường trung trực của AE.

• Do ∆ABD = ∆EBD nên widehat{BED} = widehat{BAD} =90° (hai góc tương ứng)

Xét DDCE vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất.

Do đó DC > DE.

Mà AD = DE nên AD < DC.

c) • Tam giác BAE có BA = BE nên cân tại B.

Do đó widehat{BAE} = widehat{BEA}

widehat{ABE} +widehat{BAE}+ widehat{BEA} =180°

Suy ra widehat{BAE} = widehat{BEA} =frac{180^{circ}-widehat{ABE}}{2}(1)

Tương tự với tam giác BFC ta cũng có

widehat{B F C}=widehat{B C F}=frac{180^{circ}-widehat{F B C}}{2}(2)

Từ (1) và (2) suy ra widehat{BAE} = widehat{BFC}

Mà hai góc này ở vị trí đồng vị nên AE // FC.

Lại có AE ⊥ BD (do BD là đường trung trực của AE)

Do đó BD ⊥ FC.

• Xét DBFC có BD ⊥ FC, CA ⊥ BF, BD cắt CA tại D nên D là trực tâm của DBFC.

Suy ra FD ⊥ BC.

Mà DE ⊥ BC (do widehat{BED}=90°)

Do đó ba điểm F, D, E thẳng hàng.

Bài 4. (0,5 điểm)

Ta thực hiện phép chia đa thức như sau:

Ta được thương của phép chia trên là x2 + x + a, dư (a – 1)x + b – a.

Để đa thức x4 + ax2 + b chia hết cho đa thức x2 – x + 1 thì dư phải bằng 0 với mọi x.

Do đó (a – 1)x + b – a = 0 với mọi x.

Vậy a = b = 1.

Ma trận đề thi học kì 2 Toán 7

STT

Chương

Nội dung kiến thức

Mức độ kiến thức, kĩ năng cần kiểm tra, đánh giá

Tổng % điểm

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

TN

TL

TN

TL

TN

TL

TN

TL

1

Một số yếu tố thống kê và xác suất

Thống kê – Thu thập và tổ chức dữ liệu

2

(0,5đ)

1

(0,5đ)

1

(0,5đ)

25%

Xác suất – Làm quen với biến cố ngẫu nhiên và xác suất của biến cố ngẫu nhiên

2

(0,5đ)

1

(0,5đ)

2

Biểu thức đại số

Biểu thức đại số

1

(0,25đ)

35%

Đa thức một biến

2

(0,5đ)

1

(0,5đ)

2

(1,0đ)

1

(0,5đ)

1

(0,5đ)

3

Tam giác

Tam giác. Tam giác bằng nhau. Tam giác cân. Quan hệ giữa đường vuông góc và đường xiên. Các đường đồng quy của tam giác

4

(1,0đ)

1

(1,0đ)

2

(2,0đ)

40%

Tổng: Số câu

Điểm

8

(2,0đ)

1

(0,5đ)

4

(1,0đ)

5

(3,0đ)

4

(3,0đ)

1

(0,5đ)

23

(10đ)

Tỉ lệ

25%

40%

30%

5%

100%

Tỉ lệ chung

65%

35%

100%

Lưu ý:

– Các câu hỏi trắc nghiệm khách quan là các câu hỏi ở mức độ nhận biết và thông hiểu, mỗi câu hỏi có 4 lựa chọn, trong đó có duy nhất 1 lựa chọn đúng.

– Các câu hỏi tự luận là các câu hỏi ở mức độ nhận biết, thông hiểu, vận dụng và vận dụng cao.

Đề thi cuối kì 2 Toán 7 Kết nối tri thức

Đề thi học kì 2 Toán 7

PHÒNG GD&ĐT…….

TRƯỜNG THCS………..

ĐỀ THI HỌC KÌ 2 NĂM 2022 – 2023

MÔN: TOÁN 7

Sách KNTTVCS

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN (3,0 điểm)

Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây:

Câu 1. Từ đẳng thức 2.15 = 6.5 lập được tỉ lệ thức nào sau đây?

A.frac{5}{12}=frac{6}{2}
B.frac{2}{5}=frac{6}{15}
C.frac{2}{15}=frac{15}{2}
D.frac{5}{6}=frac{15}{2}

Câu 2. Giá trị nào của x thỏa mãn frac{x-1}{6}=frac{x-5}{7}

A. x = –27;
B. x = –23;
C. x = 23;
D. x = 27.

Câu 3. Đại lượng y tỉ lệ nghịch với đại lượng x nếu:

A. x = ay với hằng số a ≠ 0;
B. y=frac{a}{x} với hằng số a ≠ 0;
C. y = ax với hằng số a ≠ 0;
D.y=frac{x}{a} với hằng số a ≠ 0.

Câu 4. Trong các biểu thức sau, biểu thức nào là biểu thức số?

A. 32 − 4;
B. x – 6 + y;
C. x2 + x;
D. frac{1}{x}+ x+1

Câu 5. Cho hai biểu thức: E = 2(a + b) – 4a + 3 và F = 5b – (a – b).

Khi a = 5 và b = –1. Chọn khẳng định đúng:

A. E = F;
B. E > F;
C. E < F;
D. E ≈ F.

Câu 6. Giá trị x = ‒ 1 là nghiệm của đa thức nào sau đây?

A. M(x) = x – 1;
B. N(x) = x + 1;
C. P(x) = x;
D. Q(x) = – x.

Câu 7. Trong một phép thử, bạn An xác định được biến cố M, biến cố N có xác suất lần lượt là 1/3 và 1/2. Hỏi biến cố nào có khả năng xảy ra thấp hơn?

A. Biến cố M;
B. Biến cố N;
C. Cả hai biến cố M và N đều có khả năng xảy ra bằng nhau;
D. Không thể xác định được.

Câu 8. Khẳng định nào sau đây là đúng?

A. Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh nhỏ hơn;
B. Trong một tam giác, góc đối diện với cạnh nhỏ hơn là góc lớn hơn;
C. Trong một tam giác vuông, cạnh huyền là cạnh nhỏ nhất;
D. Trong một tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất.

Câu 9. Cho ∆ABC có AB > BC > AC. Chọn khẳng định sai:

A. AB < BC – AC;
B. AB > BC – AC;
C. AC > AB – BC;
D. AC < AB + BC.

Câu 10. Cho tam giác ABC. Ba đường trung trực của tam giác ABC cùng đi qua một điểm M. Khẳng định nào sau đây là đúng?

A. M cách đều ba đỉnh của tam giác ABC;
B. M cách đều ba cạnh của tam giác ABC;
C. M là trọng tâm tam giác ABC;
D. M là trực tâm tam giác ABC.

Câu 11. Hình hộp chữ nhật, hình lập phương không có chung đặc điểm nào dưới đây?

A. Các cạnh bằng nhau;
B. Các mặt đáy song song;
C. Các cạnh bên song song với nhau;
D. Có 8 đỉnh.

Câu 12. Một hình hộp chữ nhật có diện tích xung quanh là 180 cm2, độ dài hai cạnh đáy là 8 cm và 10 cm. Chiều cao của hình hộp chữ nhật đó là

A. 2 cm;
B. 4 cm;
C. 5 cm;
D. 10 cm.

PHẦN II. TỰ LUẬN (7,0 điểm)

Bài 1. (2,0 điểm) Cho đa thức A(x) = –11x5 + 4x – 12x2 + 11x5 + 13x2 – 7x + 2.

a) Thu gọn, sắp xếp đa thức A(x) theo số mũ giảm dần của biến rồi tìm bậc, hệ số cao nhất của đa thức.

b) Tìm đa thức M(x) sao cho M(x) = A(x).B(x), biết B(x) = x – 1.

c) Tìm nghiệm của đa thức A(x).

Tham khảo thêm:   2 cách chế biến cá hường đơn giản mà ngon miệng

Bài 2. (1,0 điểm)Ba đội công nhân cùng chuyển một khối lượng gạch như nhau. Thời gian để đội thứ nhất, đội thứ hai và đội thứ ba làm xong công việc lần lượt là 2 giờ, 3 giờ, 4 giờ. Tính số công nhân tham gia làm việc của mỗi đội, biết rằng số công nhân của đội thứ ba ít hơn số công nhân của đội thứ hai là 5 người và năng suất lao động của các công nhân là như nhau.

Bài 3. (1,0 điểm) Chọn ngẫu nhiên một số trong tập hợp M = {2; 3; 5; 6; 8; 9}.

a) Trong các biến cố sau, biến cố nào là biến cố chắc chắn? Biến cố nào là biến cố không thể và biến cố nào là biến cố ngẫu nhiên?

A: “Số được chọn là số nguyên tố”;

B: “Số được chọn là số có một chữ số”;

C: “Số được chọn là số tròn chục”.

b) Tính xác suất của biến cố A.

Bài 4. (2,5 điểm) Cho tam giác ABC vuông tại A, đường phân giác BD (D∈AC). Từ D kẻ DH vuông góc với BC.

a) Chứng minh ΔABD = ΔHBD.

b) So sánh AD và DC.

c) Gọi K là giao điểm của đường thẳng AB và DH, I là trung điểm của KC. Chứng minh 3 điểm B, D, I thẳng hàng.

Bài 5. (0,5 điểm) Tìm các giá trị nguyên của n để 2n 2 – n + 2 chia hết cho 2n + 1.

Đáp án đề thi học kì 2 Toán 7

PHẦN I. Trắc nghiệm (3,0 điểm)

Câu

1

2

3

4

5

6

7

8

9

10

11

12

Đáp án

B

B

B

A

B

B

A

D

A

A

A

C

II. Tự luận 

Bài 1. (2,0 điểm)

a) Ta có:

A(x) = –11x5 + 4x – 12x2 + 11x5 + 13x2 – 7x + 2

= x2 – 3x + 2.

Đa thức A(x) có bậc là 2 và hệ số cao nhất là 1.

b) M(x) = A(x).B(x)

= (x2 – 3x + 2).(x – 1)

= x.(x2 – 3x + 2) – 1.(x2 – 3x + 2)

= x3 – 3x2 + 2x – x2 + 3x – 2

= x2 – 4x2 + 5x – 2.

c) A(x) = 0

x2 – 3x + 2 = 0

x2 – x – 2x + 2 = 0

x(x – 1) – 2(x – 1) = 0

(x – 1)(x – 2) = 0

x = 1 hoặc x = 2.

Vậy đa thức A(x) có nghiệm là x ∈ {1; 2}.

Bài 2. (1,0 điểm)

Gọi số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là x, y, z.

Số công nhân của đội thứ ba ít hơn số công nhân của đội thứ hai là 5 người nên y – z = 5.

Với cùng một khối lượng công việc, số công nhân tham gia làm việc và thời gian hoàn thanh công việc của mỗi đội là hai đại lượng tỉ lệ nghịch với nhau.

frac{x}{frac{1}{2}}=frac{y}{frac{1}{3}}=frac{z}{frac{1}{4}}

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

frac{x}{frac{1}{2}}=frac{y}{frac{1}{3}}=frac{z}{frac{1}{4}}=frac{y-z}{frac{1}{3}-frac{1}{4}}=60

Từ đó suy ra x=60.1/2=30 ,y=60.1/3=20, z=60.1/4=15.

Vậy số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là 30 người, 20 người, 15 người.

Bài 3. (1,0 điểm) M = {2; 3; 5; 6; 8; 9}.

a) Tập hợp M gồm có số nguyên tố và hợp số nên biến cố A là biến cố ngẫu nhiên.

Trong tập hợp M, tất cả các số đều là số có một chữ số nên biến cố B là biến cố chắc chắn.

Trong tập hợp M, không có số nào là số tròn chục nên biến cố C là biến cố không thể.

b) Trong tập hợp M gồm 6 số, có 3 số là số nguyên tố, đó là số 2; 3; 5.

Xác suất của biến cố A là: frac{3}{6}=frac{1}{2}

Bài 4. (2,5 điểm)

a) Xét DABD và ΔHBD có:

BAD^=BHD^=90°,

BD là cạnh chung,

widehat{ABD} = widehat{HBD}(do BD là tia phân giác của ABD^).

Do đó ΔABD = ΔHBD (cạnh huyền – góc nhọn).

b) Từ ΔABD = ΔHBD (câu a) suy ra AD = HD (hai cạnh tương ứng)

Xét ΔDHC vuông tại H có DC là cạnh huyền nên DC là cạnh lớn nhất

Do đó DC > HD nên DC > AD.

c) Xét ΔBKC có CA ⊥ BK, KH ⊥ BC và CA cắt KH tại D

Do đó D là trực tâm của DBKC, nên BD ⊥ KC (1)

Gọi J là giao điểm của BD và KC.

Xét ∆BKJ và ∆BCJ có:

widehat{BJK} = widehat{BJC}=90°,

BJ là cạnh chung,

widehat{KBJ} = widehat{CBJ}=90°,(do BJ là tia phân giác của ABD^).

Do đó ΔBKJ = ΔBCJ (cạnh góc vuông – góc nhọn kề)

Suy ra KJ = CJ (hai cạnh tương ứng)

Hay J là trung điểm của KC.

Mà theo bài I là trung điểm của KC nên I và J trùng nhau.

Do đó ba điểm B, D, I thẳng hàng.

Bài 5. (0,5 điểm)

Thực hiện phép chia đa thức 2n2 – n + 2 cho đa thức 2n + 1 như sau:

Để 2n2 – n + 2 chia hết cho 2n + 1 thì (2n + 1) ∈ Ư(3) = {1; ‒1; 3; ‒3}.

Ta có bảng sau:

Vậy n ∈ {–2; –1; 0; 1}.

Ma trận đề thi học kì 2 Toán 7

STT

Chương

Nội dung

kiến thức

Mức độ kiến thức, kĩ năng cần kiểm tra, đánh giá

Tổng % điểm

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

TN

TL

TN

TL

TN

TL

TN

TL

1

Tỉ lệ thức và đại lượng tỉ lệ

Tỉ lệ thức

1

(0,25đ)

1

(0,25đ)

17,5%

Tính chất dãy tỉ số bằng nhau và đại lượng tỉ lệ

1

(0,25đ)

1

(1,0đ)

2

Biểu thức đại số và đa thức

Biểu thức đại số

1

(0,25đ)

1

(0,25đ)

32,5%

Đa thức một biến

1

(0,25đ)

1

(1,0đ)

2

(1,0đ)

1

(0,5đ)

3

Làm quen với biến cố và xác suất của biến cố

Biến cố

1

(0,75đ)

12,5%

Xác suất của biến cố

1

(0,25đ)

1

(0,25đ)

4

Quan hệ giữa các yếu tố trong một tam giác

Quan hệ giữa đường vuông góc và đường xiên. Các đường đồng quy của tam giác

3

(0,75đ)

1

(1,0đ)

32,5%

Giải bài toán có nội dung hình học và vận dụng giải quyết vấn đề thực tiễn liên quan đến hình học

1

(1,0đ)

1

(0,5đ)

5

Một số hình khối trong thực tiễn

Hình hộp chữ nhật và hình lập phương

1

(0,25đ)

1

(0,25đ)

5%

Tổng: Số câu

Điểm

9

(2,25đ)

1

(0,75đ)

3

(0,75đ)

4

(3,25đ)

4

(2,5đ)

1

(0,5đ)

22

(10đ)

Tỉ lệ

30%

40%

25%

5%

100%

Tỉ lệ chung

70%

30%

100%

Lưu ý:

– Các câu hỏi trắc nghiệm khách quan là các câu hỏi ở mức độ nhận biết và thông hiểu, mỗi câu hỏi có 4 lựa chọn, trong đó có duy nhất 1 lựa chọn đúng.

– Các câu hỏi tự luận là các câu hỏi ở mức độ thông hiểu, vận dụng và vận dụng cao.

– Số điểm tính cho 1 câu trắc nghiệm là 0,25 điểm/câu; số điểm của câu tự luận được quy định trong hướng dẫn chấm nhưng phải tương ứng với tỉ lệ điểm được quy định trong ma trận.

………….

Tải file tài liệu để xem thêm đề thi học kì 2 Toán 7

Cảm ơn bạn đã theo dõi bài viết Bộ đề thi học kì 2 môn Toán lớp 7 năm 2022 – 2023 (Sách mới) 16 Đề kiểm tra học kì 2 Toán 7 (Có ma trận, đáp án) của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *