Bạn đang xem bài viết ✅ Bộ đề thi học kì 1 môn Toán lớp 9 năm 2023 – 2024 13 Đề thi cuối kì 1 Toán 9 (Có ma trận, đáp án) ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Đề thi học kì 1 môn Toán 9 năm 2023 – 2024 gồm 13 đề kiểm tra có đáp án chi tiết kèm theo bảng ma trận đề thi.

Đề thi cuối kì 1 Toán 9 năm 2023 được biên soạn với cấu trúc đề rất đa dạng, bám sát nội dung chương trình học trong sách giáo khoa. Hi vọng đây sẽ là tài liệu hữu ích cho quý thầy cô và các em ôn tập và củng cố kiến thức, chuẩn bị sẵn sàng cho học kì 1 lớp 9 sắp tới. Vậy sau đây là nội dung chi tiết TOP 13 đề thi cuối kì 1 Toán 9 năm 2023 – 2024, mời các bạn cùng theo dõi tại đây. Bên cạnh đó các bạn xem thêm đề thi học kì 1 môn Ngữ văn 9, đề thi học kì 1 môn tiếng Anh 9.

TOP 13 Đề thi cuối kì 1 Toán 9 năm 2023 – 2024

  • 1. Đề thi học kì 1 môn Toán 9 – Đề 1
  • 2. Đề thi học kì 1 Toán 9 – Đề 2
  • 3. Đề thi cuối kì 1 Toán 9 – Đề 3
  • 4. Đề thi cuối kì 1 Toán 9 – Đề 4

1. Đề thi học kì 1 môn Toán 9 – Đề 1

1.1 Đề thi cuối kì 1 Toán 9

Câu 1 (1,0đ):

a) Phát biểu định nghĩa hàm số bậc nhất? Cho 2 ví dụ về hàm số bậc nhất?

b) Đường thẳng và đường tròn có bao nhiêu vị trí tương đối? Hãy kể tên và cho biết số điểm chung của từng vị trí?

Câu 2 (1,0đ):Thực hiện phép tính:

a) sqrt{2 frac{7}{9} cdot 5 frac{1}{16} cdot frac{1}{100}}

b) (sqrt{2}+2 sqrt{3}-sqrt{8}) cdot sqrt{2}-sqrt{24}

Câu 3(2,0đ): Cho biểu thức M=frac{sqrt{x}}{sqrt{x}-1}-frac{2 sqrt{x}-1}{x-sqrt{x}}

a) Rút gọn M với mathrm{x}>0x neq 1

b) Tìm x để M=-2.

Câu 4 (1,5đ): Cho hàm số mathrm{y}=-mathrm{x}+mathrm{b}

a) Tìm b, biết đồ thị của hàm số đi qua điểm M(8 ;-5)

b) Vẽ đồ thị hàm số với bvừa tìm được ở câu a ?

Câu 5 (1,5đ) : Cho tam giác ABC vuông tại A có B = 360, BC = 7cm. Hãy giải tam giác vuông ABC.

Câu 6 (2,0đ):

Cho đường tròn tâm O, bán kính OA = 6 cm. Gọi H là trung điểm của OA, đường thẳng vuông góc với OA tại H cắt đường tròn (O) tại B và C. Kẻ tiếp tuyến với đường tròn (O) tại B cắt đường thẳng OA tại M.

a) Tính độ dài MB.

b) Tứ giác OBAC là hình gì? vì sao?

c) Chứng minh MC là tiếp tuyến của đường tròn (O).

Câu 7 (1,0đ): Giải các hệ phương trình :left{begin{array}{l}x+2 y=4 \ x-2 y=2end{array}right.

1.2 Đáp án đề thi cuối kì 1 Toán 9

Câu

Nội dung

Điểm

1

a

Định nghĩa ( SGK Toán 9 HK I trang 47)

Ví dụ : y = 5x – 1, y = -x + 3,…

0,25đ

0,25đ

b

Đường thẳng và đường tròn có 3 vị trí tương đối :

+ Đường thẳng cắt đường tròn, số điểm chung là 2

+ Đường thẳng tiếp xúc với đường tròn, số điểm chung là 1

+ Đường thẳng không giao với đường tròn, số điểm chung là 0

0,25đ

0,25đ

2.

begin{array}{l|l}
begin{array}{l}
sqrt{2 frac{7}{9} cdot 5 frac{1}{16} cdot frac{1}{100}}=sqrt{frac{25}{9} cdot frac{81}{16} cdot frac{1}{100}}=sqrt{left(frac{5}{3}right)^2} cdot sqrt{left(frac{9}{4}right)^2} cdot sqrt{left(frac{1}{10}right)^2} \
=
end{array} \
mathrm{b} cdot frac{5}{3} cdot frac{1}{10}=frac{3}{8}
end{array}

0,25đ

0,25đ

Xem thêm đáp án chi tiết trong file tải về

1.3 Ma trận đề thi học kì 1 Toán 9

Cấp độ

Chủ đề

Nhận biết

Thông hiểu

Vận dụng

Tổng

Cấp độ Thấp

Cấp độ Cao

1. Căn bậc hai-Căn bậc ba.

Hiểu được các quy tắt khai phương và rút gọn các căn thức bậc hai

Thực hiện được các phép biến đổi đơn giản về căn bậc hai, rút gọn biểu thức chứa căn thức bậc hai, Vận dụng giải bài tập liên quan

Số câu :

Số điểm:

Tỉ lệ %

2câu (2a,2b)

1,0đ

10%

1câu (3b)

1,0đ

10%

1câu (3a)

1,0đ

10%

4

3,0đ

30%

2. Hàm số bậc nhất

HS nhận biết được khái niệm về hàm số bậc nhất

Rèn luyện kỹ năng vẽ đồ thị, hiểu được khi nào điểm thuộc đồ thị

Số câu :

Số điểm :

Tỉ lệ %

1câu (1a)

0,5đ

5%

1câu (4a)

0,5đ

5%

1câu (4b)

1,0đ

10%

3

2,0đ

20%

3.Hệ hai phương trình bậc nhất hai ẩn.

Biết vận dụng quy tắc vào giải hệ hai phương trình bậc nhất hai ẩn

Số câu :

Số điểm :

Tỉ lệ %

câu 7

1,0đ

10%

1

1,0đ

10%

4.Hệ thức lượng trong tam giác vuông

Vận dụng hệ thức lượng trong tam giác vuông vào giải tam giác vuông

Số câu :

Số điểm :

Tỉ lệ :

1câu (5)

1,5đ

15%

1

1,5đ

15%

5. Đường tròn

HS nhận biết được các vị trí tương đối của đường thẳng và đường tròn

Vẽ hình minh họa. Vận dụng kiến thức về cạnh của tam giác vuông vào giải toán.

Vận dụng tính chất của đường tròn, tính chất 2 tiếp tuyến cắt nhau để chứng minh 1 góc bằng 900. Chứng minh tứ giác là thoi.

Số câu

Số điểm

Tỉ lệ %

1b

0,5đ

5%

1 (6a +hình vẽ)

1,0đ

10%

2 (6b,6c)

1,0đ

10%

4

2,5đ

25%

Tổng số câu

Tổng số điểm

Tỉ lệ %

2

1,0đ

10%

4

2,5đ

25 %

4

4,5đ

45%

3

2,0đ

20%

13

10đ

100%

Tham khảo thêm:   Tổng hợp các lệnh trong game Mu Online

2. Đề thi học kì 1 Toán 9 – Đề 2

2.1 Đề thi cuối kì 1 Toán 9

Khoanh tròn vào chữ cái ở đầu câu với những câu trả lời đúng (mỗi câu đúng 0,25 điểm)

Câu 1. Với những giá trị nào của x thì sqrt{x - 2020} có nghĩa

A. x > 2020

B. x > -2020

C. x ≥ 2020

D. x ≤ 2020

Câu 2. Căn bậc hai số học của 9 là:

A. 81

B . 3

C. 81

D . 3

Câu 3. Đồ thị hàm số y = 2x -3 đi qua điểm nào?

A. (1; -3)

B. (1; -5)

C. (-1; -5)

D. (-1; -1)

Câu 4. Hàm số y= (m – 5)x + 2 là hàm số đồng biến khi nào?

A. m <5

B. m >5

C. m <-5

D. m >-5

Câu 5. Để hàm số y = (m +1)x -3 là hàm số bậc nhất thì:

A. m neq-1

B. m neq 1

C. m=-1

D. m=1

Câu 6. Cho hàm số bậc nhất mathrm{y}=(mathrm{m}-3) mathrm{x}-4 và mathrm{y}=4 mathrm{x}. Giá trị của m đề đồ thị của hai hàm số cắt nhau là:

A. m neq 3

B. m neq 7

C. m neq-3, m neq-7

D. m neq 3, m neq 7

Câu 7. Tam giác ABC vuông tại A, đường cao AH, biết AB = 6cm, AC = 8cm. Độ dài AH là:

A. 3,5cm

B. 4,6cm

C. 4,8cm

D. 5cm

Câu 8. Cho tam giác ABC vuông tại B. Khi đó SinC bằng:

A. frac{A B}{A C}

B. frac{A C}{A B}

C. frac{B C}{A C}

D. frac{A B}{B C}

Câu 9. Đường thẳng và đường tròn tiếp cắt nhau thì số điểm chung là:

A. 0

B. 1

C. 2

D. 3

Câu 10. Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường nào?

A. Phân giác

B. Trung tuyến

C. Đường cao

D. Trung trực

Câu 11. Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm ở vị trí nào?

A. Nằm ngoài đường tròn

B. Nằm trên đường nối tâm

C. Nằm ngoài đường nối tâm

D. Nằm trong đường tròn

Câu 12. Nếu AB là một dây bất kì của đường tròn (O; R) thì:

A. A B leq 2 R

B. A B<2 R

C. AB>2 R

D. A B leq R

II/ PHẦN TỰ LUẬN : (7 điểm)

Bài 1. (1,5 điểm).

a) Tính M=-sqrt{18}+sqrt{32}+2019 sqrt{2}

b) Rút gọn biểu thức N=left(frac{sqrt{x}}{sqrt{x}+1}+frac{sqrt{x}}{sqrt{x}-1}right): frac{2}{x-1} quad (với mathrm{x}>0mathrm{x} neq 1)

Bài 2. (1,5 điểm) Cho hàm số y=(m-1) x+m+4

a) Vẽ đồ thị hàm số trên với m = -1.

b) Tìm m để đồ thị hàm số (1) song song với đồ thị hàm số y = -x + 2.

Bài 3. (3 điểm) Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A, bán kính AH, kẻ các tiếp tuyến BD, CE với đường tròn tâm A (D, E là các tiếp điểm khác H). Chứng minh rằng:

a) Ba điểm D, A, E thẳng hàng;

b) DE tiếp xúc với đường tròn có đường kính BC.

Bài 4. (1 điểm) Giải phương trình:

sqrt{x- 2 }- 3sqrt{x ^2- 4 }= 0

2.2 Đáp án đề thi học kì 1 Toán 9

I.TRẮC NGHIỆM: ( 3 điểm )

Câu

1

2

3

4

5

6

7

8

9

10

11

12

Đáp án

C

B

C

B

A

D

C

A

C

D

B

A

Mỗi câu trả lời đúng 0,25đ

II.TỰ LUẬN ( 7 điểm )

Bài

Nội dung – Đáp án

Điểm

1.

begin{aligned}
& text { a) } M=-sqrt{18}+sqrt{32}+2019 sqrt{2} \
=&-3 sqrt{2}+4 sqrt{2}+2019 sqrt{2} \
=& 2020 sqrt{2} \
text { b) } & N=left(frac{sqrt{x}}{sqrt{x}+1}+frac{sqrt{x}}{sqrt{x}-1}right): frac{2}{x-1} \
=& frac{sqrt{x} cdot(sqrt{x}-1)+sqrt{x} cdot(sqrt{x}+1)}{(sqrt{x}+1) cdot(sqrt{x}-1)}: frac{2}{x-1} \
=& frac{2 x}{x-1}: frac{2}{x-1}=frac{2 x}{x-1} cdot frac{x-1}{2}=x
end{aligned}

0,5đ

0,5đ

0,5đ

………….

2.3 Ma trận đề thi học kì 1 Toán 9

Chủ đề

Nhận biết

Thông hiểu

Vận dụng

Tổng

Vận dụng thấp

Vận dụng cao

TN

TL

TN

TL

TN

TL

TN

TL

1. Căn bậc hai

Biết được đk để căn thức có nghĩa, căn bậc hai của số không âm

Hiểu được căn bậc hai số học

Sử dụng phép bđ đưa thừa số ra ngoài dấu căn. Sử dụng các phép biến đổi để thu gọn biểu thức chứa căn bậc hai

Giải phương trình chứa căn bậc hai

Số câu

Số điểm

Tỉ lệ

1

0,25

2,5%

1

0,25

2,5%

2

1,5

15%

1

1

10%

5

3

30%

2. Hàm số

Nhận biết được hàm số đồng biến, hàm số bậc nhất

Xác định được điểm thuộc đồ thị hàm số

Tìm đk để đường thẳng cắt nhau, song song. Vẽ được đồ thị hàm số bậc nhất

Số câu

Số điểm

Tỉ lệ

2

0,5

5%

1

0,25

2,5%

1

0,25

2,5%

2

1,5

15%

6

2,5

25%

3. Một số hệ thức về cạnh và đường cao. Tỉ số lượng giác

Nhận biết được tỉ số lượng giác của góc nhọn

Hiểu được hệ thức để tính độ dài đường cao

Số câu

Số điểm

Tỉ lệ

1

0,25

2,5%

1

0,25

2,5%

2

0,5

5%

4. Đường tròn

Biết được số điểm chung của đường thẳng và đường tròn. Liên hệ giữa đường kính và dây

Hiểu được tính chất của đường nối tâm. Tâm đường tròn ngoại tiếp tam giác

Chứng minh được 3 điểm thẳng hàng và một đường thẳng là tiếp tuyến của đường tròn

Số câu

Số điểm

Tỉ lệ

2

0,5

5%

2

0,5

5%

2

3

30%

6

4

40%

Tổng số câu

Tổng số điểm

Tỉ lệ

6

1,5

15%

5

1,25

12,5%

1

0,25

2,5%

6

6

60%

1

1

10%

19

10

100%

Tham khảo thêm:   Văn mẫu lớp 12: Nghị luận xã hội về tiếng cười trong cuộc sống (Dàn ý + 6 Mẫu) Những bài văn mẫu lớp 12

………….

3. Đề thi cuối kì 1 Toán 9 – Đề 3

3.1 Đề thi học kì 1 Toán 9

Câu 1: Thực hiện các phép tính:

a) sqrt{12}+5sqrt{3}-sqrt{48}+sqrt{75} b) sqrt{{{left( 1-2sqrt{5} right)}^{2}}}+sqrt{{{left( sqrt{45}+1 right)}^{2}}}

Câu 2: Giải phương trình:

a) sqrt{3x-1}=sqrt{5}

b . sqrt{{{x}^{2}}-6x+9}=9

c.   sqrt{{{x}^{2}}+8x-5}=x-1

Câu 3: Cho biểu thức

A=left( frac{1}{sqrt{x}-1}-frac{1}{sqrt{x}} right):left( frac{sqrt{x}+1}{sqrt{x}-2}-frac{sqrt{x}+2}{sqrt{x}-1} right)

a. Tìm điều kiện của x để biểu thức A có nghĩa.

b. Rút gọn biểu thức A

c. Tìm giá trị của x để A = 1/6

Câu 4: Cho hàm số bậc nhất y = (m + 5) + 2m – 10y

a. Với giá trị nào của m thì hàm số nghịch biến.

b. Tìm giá trị của m để đồ thi cắt trục tung tại điểm có tung độ bằng 9.

Bài 5: Cho tam giác ABC vuông tại A, đường cao AH chia cạnh CB thành hai đoạn CH = 8, BH = 3. Gọi M, N lần lượt là chân các đường vuông góc hạ từ H xuống AB và AC.

a. Tính độ dài MN.

b. Chứng minh rằng: AN . AC = AM . AB

c. Chứng minh MN là tiếp tuyến của đường tròn đường kính OO’, biết O, O’ lần lượt là tâm đường tròn ngoại tiếp tam giác BHM, NHC.

Câu 6: Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức:M=frac{1}{a+b+1}+frac{1}{b+c+1}+frac{1}{c+a+1}

3.2 Đáp án đề thi học kì 1 Toán 9

Câu 1:

a. sqrt{12}+5sqrt{3}-sqrt{48}+sqrt{75}=2sqrt{3}+5sqrt{3}-4sqrt{3}+5sqrt{3}=8sqrt{3}

b. sqrt{{{left( 1-2sqrt{5} right)}^{2}}}+sqrt{{{left( sqrt{45}+1 right)}^{2}}}=left| 1-2sqrt{5} right|+left| 3sqrt{5}+1 right|=2sqrt{5}-1+3sqrt{5}+1=5sqrt{5}

Câu 2:

a. sqrt{3x-1}=sqrt{5}

Điều kiện: xge frac{1}{3}

sqrt{3x-1}=sqrt{5} <=> 3x – 1 = 5 <=> x = 2 (thỏa mãn)

Vậy phương trình có nghiệm x = 2

b. sqrt{{{x}^{2}}-6x+9}=9

Điều kiện: x2 – 6x + 9 = (x – 3)2 ≥ 0 ∀x

begin{align}

& ptLeftrightarrow sqrt{{{left( x-3 right)}^{2}}}={{3}^{2}}Leftrightarrow left| x-3 right|=3 \

& Leftrightarrow left[ begin{matrix}

x-3=3 \

x-3=-3 \

end{matrix}Leftrightarrow left[ begin{matrix}

x=6 \

x=0 \

end{matrix} right. right. \

end{align}

Vậy phương trình có nghiệm x = 0 hoặc x = 6

c. sqrt{{{x}^{2}}+8x-5}=x-1

Điều kiện: {{x}^{2}}+8x-5ge 0

PTTĐ Leftrightarrow left{ begin{matrix}

x-1ge 0 \

{{left( sqrt{{{x}^{2}}+8x-5} right)}^{2}}={{left( x-1 right)}^{2}} \

end{matrix}Leftrightarrow left{ begin{matrix}

xge 1 \

{{x}^{2}}+8x-5={{x}^{2}}-2x+1 \

end{matrix} right. right.Leftrightarrow left{ begin{matrix}

xge 1 \

x=dfrac{3}{5}left( L right) \

end{matrix} right.

Vậy phương trình vô nghiệm.

Câu 3:

A = left( {frac{1}{{sqrt x  - 1}} - frac{1}{{sqrt x }}} right):left( {frac{{sqrt x  + 1}}{{sqrt x  - 2}} - frac{{sqrt x  + 2}}{{sqrt x  - 1}}} right)

a) Điều kiện x geqslant 0,x ne 4,x ne 1

b)

begin{matrix}
  A = dfrac{{sqrt x  - sqrt x  + 1}}{{sqrt x left( {sqrt x  - 1} right)}}:left[ {dfrac{{left( {sqrt x  + 1} right)left( {sqrt x  - 1} right)}}{{left( {sqrt x  - 2} right)left( {sqrt x  - 1} right)}} - dfrac{{left( {sqrt x  + 2} right)left( {sqrt x  - 2} right)}}{{left( {sqrt x  - 2} right)left( {sqrt x  - 1} right)}}} right] hfill \
  A = dfrac{1}{{sqrt x left( {sqrt x  - 1} right)}}:dfrac{{x - 1 - left( {x - 4} right)}}{{left( {sqrt x  - 2} right)left( {sqrt x  - 1} right)}} hfill \
  A = dfrac{1}{{sqrt x left( {sqrt x  - 1} right)}}.dfrac{{left( {sqrt x  - 2} right)left( {sqrt x  - 1} right)}}{3} hfill \
  A = dfrac{{sqrt x  - 2}}{{3sqrt x }} hfill \ 
end{matrix}

c) A = frac{1}{6} Leftrightarrow frac{{sqrt x  - 2}}{{3sqrt x }} = frac{1}{6} Leftrightarrow 2sqrt x  - 4 = sqrt x  Leftrightarrow sqrt x  = 4 Leftrightarrow x = 16

Vậy A = frac{1}{6} khi và chỉ khi x = 16

Câu 5:

a) Ta có: widehat {HMA} = widehat {ANH} = widehat {MHN} = {90^0} Rightarrow AMHN là hình chữ nhật

Rightarrow MN = AH = sqrt {BH.HC}  = sqrt {24}  = 2sqrt 6

b) AN . AC = AM . AB (cùng bằng AH2)

c) Ta có tam giác MHB vuông tại M nên O là trung điểm của BH.

Tương tự với tam giác NHC vuông tại N nên O’ là trung điểm của CH.

Gọi D là giao điểm của MN và AH, E là trung điểm của OO’

Ta có:

widehat {MNH} + widehat {HNO'} = widehat {DNH} + widehat {HNO'} = {90^0} Rightarrow MN bot NO'

widehat {OMH} + widehat {HMD} = widehat {OHM} + widehat {MHD} = {90^0} Rightarrow MN bot OM

Vậy tam giác ODO’ vuông tại D, D thuộc đường tròn đường kính OO’

Lại có ED là đường trung bình của hình thang OMNO’Rightarrow ED bot MN

Vậy MN là tiếp tuyến của đường tròn đường kính OO’

Câu 6:

Với a, b, c là các số dương thảo mãn abc = 1 ta đặt a = {x^3},b = {y^3},c = {z^3} Rightarrow xyz = 1

Ta có:

a + b + 1 = {x^3} + {y^3} + xyz = left( {x + y} right)left( {{x^2} - xy + {y^2}} right) + xyz geqslant left( {x + y} right).xy + xyz = xyleft( {x + y + z} right)

Tương tự ta có:

begin{matrix}
  b + c + 1 = {y^3} + {z^3} + xyz = left( {y + z} right)left( {{y^2} - yz + {z^2}} right) + xyz geqslant left( {y + z} right).yz + xyz = yzleft( {x + y + z} right) hfill \
  c + a + 1 = {z^3} + {x^3} + xyz = left( {z + x} right)left( {{z^2} - zx + {x^2}} right) + xyz geqslant left( {z + x} right).zx + xyz = zxleft( {x + y + z} right) hfill \
   Rightarrow M = dfrac{1}{{a + b + 1}} + dfrac{1}{{b + c + 1}} + dfrac{1}{{c + a + 1}} leqslant dfrac{{xyz}}{{xyleft( {x + y + z} right)}} + dfrac{{xyz}}{{yzleft( {x + y + z} right)}} + dfrac{{xyz}}{{zxleft( {x + y + z} right)}} = 1 hfill \ 
end{matrix}

Suy ra GTNN của Q bằng 1 khi và chỉ khi x = y = z = 1 hay a = b = c = 1

3.3 Ma trận đề thi học kì 1 Toán 9

Cấp độ

Chủ đề

Nhận biết

Thông hiểu

Vận dụng

Cộng

Cấp độ thấp

Cấp độ cao

TL

TL

TL

TL

1.Căn thức bậc hai

– Xác định điều kiện có nghĩa của căn bậc hai.

-Hiểu được hằng đẳng thức để rút gọn biểu thức

Vận dụng các phép biến đổi đơn giản để rút gọn biểu thức, tính giá trị biểu thức

Vận dụng các phép biến đổi để rút gọn biểu thức phức tạp, giải phương trình vô tỷ

Số câu:2

Số điểm:1

Số câu:2

Số điểm:1

Số câu:2

Số điểm: 1.

Số câu:1

Số điểm:0,5

Số câu: 7

Số điểm:3.5

2.Hàm số bậc nhất

Nhận biết được hàm số đồng biến, nghich biến

Hiểu được hai đường thẳng song song,..

Vẽ được đồ thị hàm số

Tìm được giao điểm đồ thị của hai hàm số bậc nhất

Số câu:2

Số điểm:1

Số câu:2

Số điểm:1

Số câu:2

Số điểm:1

Số câu: 6

Số điểm: 3

3.Hệ thức lượng trong tam giác vuông.

Hiểu được các hệ thức áp dụng vào tam giác vuông

Vận dụng các hệ thức lượng trong tam giác vuông để giải toán

Số câu:1

Số điểm:0.5

Số câu:1

Số điểm:0.5

Số câu: 2

Số điểm:

1.0

4. Đường tròn

Nhận biết được đường tròn

Hiểu được tính chất đường tròn, hai tiếp tuyến cắt nhau để chứng minh

Vận dụng khái niệm đường tròn và các tính chất đường tròn, hai tiếp tuyến cắt nhau của đường tròn để chứng minh

Số câu:1

Số điểm: 05

Số câu:1

Sốđiểm:0.5

Số câu:2

Số điểm 1

Số câu:1

Số điểm:0.5

Số câu: 5

Số điểm:3

Tổng

Số câu:4

Số điểm: 2.0

Số câu: 7

Số điểm: 3.5

Số câu:8

Số điểm: 4.0

Số câu: 2

Số điểm: 1.0

Số câu: 20

Số điểm: 10

4. Đề thi cuối kì 1 Toán 9 – Đề 4

4.1 Đề thi học kì 1 Toán 9

PHÒNG GD&ĐT ………….

TRƯỜNG THCS ……..

ĐỀ KIỂM TRA CUỐI HỌC KỲ I

NĂM HỌC: 2023– 2024

MÔN TOÁN – LỚP 9

Thời gian làm bài 90 phút (không kể thời gian phát đề)

Tham khảo thêm:   4 cách tra cứu vận đơn bưu điện, bưu cục VNPost nhanh

Câu 1 (2 điểm):

1) Tính giá trị của biểu thức

a) sqrt{12}-sqrt{27}+frac{1}{2} sqrt{48}

b) (sqrt{2}-1) sqrt{3+2 sqrt{2}}

2) Giải hệ phương trình left{begin{array}{l}x+3 y=4 \ 3 x-2 y=1end{array}right.

3) Tìm a để phương trình mathrm{ax}+2 mathrm{y}=5 nhân cấp số (3 ; 1) làm nghiệm

Câu 2 (2 điểm): Cho hàm số: mathrm{y}=(mathrm{m}+1) mathrm{x}-2 mathrm{~m} (d)

a) Xác định m để hàm số trên là hàm số nghịch biến?

b) Vẽ đồ thị hàm số trên khi m=1

c) Xác định m để đồ thị hàm số trên song song với đường thẳng y=3 x+6 ?

Câu 3 (2 điểm): Cho biểu thức mathrm{A}=left(frac{sqrt{x}}{x-4}-frac{1}{sqrt{x}+2}right): frac{sqrt{x}-2}{x-4}

a) Tìm ĐKXÐ và rút gọn biểu thức A

b) Tìm giá trị của x để mathrm{A}<mathrm{O}

c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên

Câu 4 (3.5 điểm):Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH.

1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH.

2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D.

a) Chứng minh BD là tiếp tuyến của đường tròn (C).

b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2 sqrt{P E cdot Q F}=E F

Câu 5 (0.5 điểm): Giải phương trình:

x^{2}+4 x+7=(x+4) sqrt{x^{2}+7}

4.2 Đáp án đề thi HK1 Toán 9

Câu

Nội dung đáp án

Điểm

1

(2 điểm)

a) = sqrt{12}-sqrt{27}+frac{1}{2} sqrt{48}

=2 sqrt{3}-3 sqrt{3}+frac{1}{2} cdot 4 sqrt{3}

=(2-3+2) sqrt{3}
=sqrt{3}

0.5đ

b)) =(sqrt{2}-1) sqrt{3+2 sqrt{2}}=(sqrt{2}-1) sqrt{2+2 sqrt{2}+1}=(sqrt{2}-1) sqrt{(sqrt{2}+1)^{2}}

= =(sqrt{2}-1)(sqrt{2}+1)=2-1=1

0.5đ

2)left{begin{array}{l}x+3 y=4 \ 3 x-2 y=1end{array} Leftrightarrowleft{begin{array}{l}3 x+9 y=12 \ 3 x-2 y=1end{array} Leftrightarrowleft{begin{array}{l}11 y=11 \ 3 x-2 y=1end{array} Leftrightarrowleft{begin{array}{l}y=1 \ x=1end{array}right.right.right.right.

0.5đ

3) Phương trình ax +2y =5 nhận cặp số (3;1) làm nghiệm khi a.3+2.1=5.

3a=3 suy ra a=1

0.25đ

0,25đ

2

(2 điểm)

a) y = (m+1)x -2m (d)

Hàm số trên nghịch biếnkhi m+1<0 → m<-1

0.75đ

b) Với m=1 thì hàm số có dạng: y=2x – 2(d1)

HS trình bày đầy đủ các bước và vẽ đúng

0.75đ

c) Đồ thị hàm số (d) song song với đường thẳng y=3x+6 . Vậy m=2

0.5đ

…………….

4.3 Ma trận đề thi HK1 Toán 9

Cấp độChủ đề Nhận biết Thông hiểu Vận dụng Cộng
Cấp độ thấp Cấp độ cao
TL TL TL TL

1.Căn thức bậc hai

– Xác định điều kiện có nghĩa của căn bậc hai.

-Hiểu được hằng đẳng thức để rút gọn biểu thức

Vận dụng các phép biến đổi đơn giản để rút gọn biểu thức, tính giá trị biểu thức

Vận dụng các phép biến đổi để rút gọn biểu thức phức tạp, giải phương trình vô tỷ

Số câu:2

Số điểm:1

Số câu:2

Số điểm:1

Số câu:2

Số điểm: 1.

Số câu:1

Số điểm:0,5

Số câu: 7

Số điểm:3.5

2.Hàm số bậc nhất

Nhận biết được hàm số đồng biến, nghich biến

Hiểu được hai đường thẳng song song,..

Vẽ được đồ thị hàm số

Tìm được giao điểm đồ thị của hai hàm số bậc nhất

Số câu:2

Số điểm:1

Số câu:2

Số điểm:1

Số câu:2

Số điểm:1

Số câu: 6

Số điểm: 3

3.Hệ thức lượng trong tam giác vuông.

Hiểu được các hệ thức áp dụng vào tam giác vuông

Vận dụng các hệ thức lượng trong tam giác vuông để giải toán

Số câu:1

Số điểm:0.5

Số câu:1

Số điểm:0.5

Số câu: 2

Số điểm:

1.0

4. Đường tròn

Nhận biết được đường tròn

Hiểu được tính chất đường tròn, hai tiếp tuyến cắt nhau để chứng minh

Vận dụng khái niệm đường tròn và các tính chất đường tròn, hai tiếp tuyến cắt nhau của đường tròn để chứng minh

Số câu:1

Số điểm: 05

Số câu:1

Sốđiểm:0.5

Số câu:2

Số điểm 1

Số câu:1

Số điểm:0.5

Số câu: 5

Số điểm:3

Tổng

Số câu:4

Số điểm: 2.0

Số câu: 7

Số điểm: 3.5

Số câu:8

Số điểm: 4.0

Số câu: 2

Số điểm: 1.0

Số câu: 20

Số điểm: 10

…………….

Mời các bạn tải File tài liệu để xem thêm nội dung 4 đề thi học kì 1 Toán 9 năm 2023

Cảm ơn bạn đã theo dõi bài viết Bộ đề thi học kì 1 môn Toán lớp 9 năm 2023 – 2024 13 Đề thi cuối kì 1 Toán 9 (Có ma trận, đáp án) của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *