Bạn đang xem bài viết ✅ Bài tập toán nâng cao lớp 8 Toán nâng cao lớp 8 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Các dạng bài tập Toán nâng cao lớp 8 là tài liệu vô cùng hữu ích cung cấp cho các em học sinh tài liệu tham khảo, học tập, bồi dưỡng và nâng cao kiến thức môn toán theo chương trình hiện hành.

Bài tập Toán nâng cao lớp 8 bao gồm các dạng bài như: nhân các đa thức, các bài tập về hằng đẳng thức đáng nhớ, phân đa thức thành nhân tử, chia đa thức … Hi vọng qua tài liệu này các em sẽ vận dụng kiến thức của mình để làm bài tập, rèn luyện linh hoạt cách giải các dạng đề để đạt kết quả cao trong các bài kiểm tra, bài thi học sinh giỏi. Bên cạnh đó các bạn xem thêm tài liệu bài tập về hằng đẳng thức.

Dạng 1: Nhân các đa thức

1. Tính giá trị:

B = x15 – 8x14 + 8x13 – 8x2 + … – 8x2 + 8x – 5 với x = 7

2. Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi đã cho ba số nào?

Tham khảo thêm:   Lời dẫn chương trình gặp mặt đầu xuân 2024 Kịch bản chương trình gặp mặt đầu xuân Giáp Thìn 2024

3. Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2

Dạng 2: Các hàng đẳng thức đáng nhớ

*Hệ quả với hằng đẳng thức bậc 2

(a+b)^2=(a-b)^2+4ab

(a-b)^2=(a+b)^2-4ab

a^2+b^2=(a+b)^2-2ab

(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc

(a+b-c)^2=a^2+b^2+c^2+2ab-2ac-2bc

(a-b-c)^2=a^2+b^2+c^2-2ab-2ac-2bc

*Hệ quả với hằng đẳng thức bậc 3

a^3+b^3=(a+b)^3-3a^2b-3ab^2

a^3+b^3=(a+b)^3-3ab(a+b)

a^3-b^3=(a-b)^3+3a^2b-3ab^2

a^3-b^3=(a-b)^3+3ab(a-b)

a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

(a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)

(a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

1. Rút gọn các biểu thức sau:

a. A = 1002 – 992+ 982 – 972 + … + 22 – 12

b. B = 3(22 + 1) (24 + 1) … (264 + 1) + 12

c. C = (a + b + c)2 + (a + b – c)2 – 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 – 3ab (a + b)

b. a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 c2 – ab – bc – ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

ii. Cho frac{1}{a}+frac{1}{b}+frac{1}{c}=0 tính A=frac{b c}{a^{2}}+frac{c a}{b^{2}}+frac{a b}{c^{2}}

iii. Cho a^{3}+b^{3}+c^{3}-3 a b c(a b c  0)

Tính B=left(1+frac{a}{b}right)left(1+frac{b}{c}right)left(1+frac{c}{a}right)

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x – 1) (x + 2) (x + 3) (x + 6)

c. C = x2 – 2x + y2 – 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 – 8x – x2

b. B = 5 – x2 + 2x – 4y2 – 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0

6.Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

Tham khảo thêm:   Hoa rum là hoa gì? Ý nghĩa của hoa rum và cách chăm sóc hoa nở đẹp

A = (3 + 1) (32 + 1) (34 + 1) … (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

Dạng 3: Phân tích đa thức thành nhân tử

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 – 7a – 6

2. a3 + 4a2 – 7a – 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

4. (a2 + a)2 + 4(a2 + a) – 12

5. (x2 + x + 1) (x2 + x + 2) – 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

Tham khảo thêm:   Viết đoạn văn tiếng Anh về điệu múa Obon (3 Mẫu) Viết về điệu múa truyền thống của người Nhật

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy – 2y2 – 2x2 + 2 = 0

Dạng 4: Chia đa thức

1. Xác định a để cho đa thức x3– 3x + a chia hết cho (x – 1)2

2. Tìm các giá trị nguyên của n để frac{{2{n^2} + 3n + 3}}{{2n - 1}}là số nguyên

3. Tìm dư trong phép chia đa thức: f(x)+x1994+x1993+1 cho

a. x – 1

b. x2 – 1

c. x2 + x + 1

4. 1. Xác định các số a va b sao cho:

a. x4 + ax2 + b chia hết cho:

i. x2 – 3x + 2

ii. x2 + x + 1

b. x4 – x3 – 3x2 + ax + b chia cho x2 – x – 2 có dư là 2x – 3

c. 2x2 + ax + b chia cho x + 1 dư – 6 chia cho x – 2 dư 21

2. Chứng minh rằng

f(x) = (x2 – x + 1)1994 + (x2 + x – 1)1994 – 2

chia hết cho x – 1. Tìm dư trong phép chia f(x) cho x2 – 1

5. Tìm n nguyên để frac{{2{n^2} + n - 7}}{{n - 2}} là số nguyên

6. Chứng minh rằng:

a. 1110 – 1 chia hết cho 100

b. 9 . 10n + 18 chia hết cho 27

c. 16n – 15n – 1 chia hết cho 255

6. Tìm tất cả các số tự nhiên n để 2n – 1 chia hết cho 7

7. Chứng minh rằng:

a. 20n + 16n – 3n – 1:323 với n chẵn

b. 11n + 2 + 122n + 1:133

c. {2^{{2^{2n}}}}+ 7 :7 với n > 1

Tính chất cơ bản và rút gọn phân thức

………………..

Mời các bạn tải File tài liệu để xem thêm Bài tập nâng cao Toán 8

Cảm ơn bạn đã theo dõi bài viết Bài tập toán nâng cao lớp 8 Toán nâng cao lớp 8 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *