Bạn đang xem bài viết ✅ Bài tập phân tích đa thức thành nhân tử Bài tập Toán lớp 8 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Bài tập phân tích đa thức thành nhân tử lớp 8 là tài liệu vô cùng hữu ích cung cấp cho các em học sinh tài liệu tham khảo, học tập, bồi dưỡng và nâng cao kiến thức môn toán theo chương trình hiện hành.

Phân tích đa thức thành nhân tử tổng hợp toàn bộ kiến thức về phương pháp phân tích đa thức thành nhân tử ví dụ minh họa kèm theo các bài tập có đáp án giải chi tiết và bài tập tự luyện. Hi vọng qua tài liệu này các em sẽ vận dụng kiến thức của mình để làm bài tập, rèn luyện linh hoạt cách giải các dạng đề để đạt kết quả cao trong các bài kiểm tra, bài thi học sinh giỏi. Bên cạnh đó các bạn xem thêm tài liệu: bài tập về hằng đẳng thức, Bài tập các trường hợp đồng dạng của tam giác.

I. Phân tích đa thức thành nhân tử là gì?

1. Định nghĩa:

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

Ví dụ:

a) 2x2+ 5x – 3 = (2x – 1).(x + 3)

b) x – 2sqrt{x}y +5sqrt{x}– 10y = [(sqrt{x})2– 2sqrt{x} y ] + (5sqrt{x}– 10y)

= sqrt{x}(sqrt{x}– 2y) + 5(sqrt{x}– 2y)

= (sqrt{x}– 2y)(sqrt{x} + 5)

II. Phương pháp phân tích đa thức thành nhân tử

a) Phương pháp đặt nhân tử chung:

Nếu tất cả các hạng tử của đa thức có một nhân tử chung thì đa thức đó được biểu diễn thành một tích của nhân tử chung với một đa thức khác.

Công thức:

AB + AC = A(B + C)

Ví dụ:

1. 5x(y + 1) – 2(y + 1) = (y + 1)(5x – 2)

2. 3x + 12 sqrt{x} y = 3 sqrt{x}(sqrt{x} + 4y)

b) Phương pháp dùng hằng đẳng thức:

Nếu đa thức là một vế của hằng đẳng thức đáng nhớ nào đó thì có thể dùng hằng đẳng thức đó để biểu diễn đa thức này thành tích các đa thức.

*Những hằng đẳng thức đáng nhớ:

(A + B)2 = A2 + 2AB + B2

Tham khảo thêm:  

(A – B)2 = A2 – 2AB + B2

A2 – B2 = (A + B)(A – B)

(A+B)3= A3 + 3A2B + 3AB2 + B3

(A – B)3= A3 – 3A2B + 3AB2-B3

A3 + B3 = (A+B) (A2 – AB + B2)

A3 – B3 = (A – B)(A2 + AB + B2)

c) Phương pháp nhóm hạng tử:

Nhóm một số hạng tử của một đa thức một cách thích hợp để có thể đặt được nhân tử chung hoặc dùng hằng đẳng thức đáng nhớ.

Ví dụ:

1. x2 – 2xy + 5x – 10y = (x2– 2xy) + (5x – 10y) = x(x – 2y) + 5(x – 2y)

= (x – 2y)(x + 5)

2. x – 3+ y – 3y = (x – 3) + (y – 3y)

= ( – 3) + y( – 3)= (- 3)( + y)

d. Phương pháp tách một hạng tử:(trường hợp đặc biệt của tam thức bậc 2 có nghiệm)

Tam thức bậc hai có dạng: ax2 + bx + c = ax2 + b1x + b2x + c () nếu

Ví dụ:

a) 2x23x + 1

= 2x2 2x x +1

= 2x(x 1) (x 1)

= (x 1)(2x 1)

e. Phương pháp thêm, bớt cùng một hạng tử:

Ví dụ:

a) y4+ 64 = y4+ 16y2 + 64 16y2

= (y2 + 8)2 – (4y)2

= (y2 + 8 4y)(y2 + 8 + 4y)

b) x2+ 4 = x2+ 4x + 4 4x = (x + 2)2 4x

= (x + 2)2 =

f. Phương pháp phối hợp nhiều phương pháp:

Ví dụ:

a) a3a2b ab2 + b3 = a2(a b) b2(a b)

=(a b) (a2 b2)

= (a b) (a b) (a + b)

= (a b)2(a + b)

III. Bài tập áp dụng phân tích đa thức thành nhân tử

Bài 1: Phân tích các đa thức sau thành nhân tử :

a) 14x2– 21xy2+ 28x2y2 = 7x(2x – 3y2 + 4xy2)

b) 2(x + 3) – x(x + 3) = (x+3)(2-x)

c) x2+ 4x – y2+ 4 = (x + 2)2 y2 = (x + 2 y)(x + 2 + y)

Bài 2: Giải phương trình sau :

2(x + 3) – x(x + 3) = 0

Vậy nghiệm của phương trình là x1 = 3: x2 = 2

Bài 3: Phân tích đa thức sau thành nhân tử:

a)8x3+ 4x2 y3 y2 = (8x3 y3) + (4x2 y2)

b) x2+ 5x 6 = x2 + 6x x 6

= x(x + 6) (x + 6)

= (x + 6)(x 1)

c. a4 + 16 = a4+ 8a2 + 16 8a2

= (a2 + 4)2 – (a)2

= (a2 + 4 +a)( a2 + 4 a)

Bài 4: Thực hiện phép chia đa thức sau đây bằng cách phân tích đa thức bị chia thành nhân tử:

a) (x5+ x3+ x2 + 1):(x3 + 1)

b) (x25x + 6):(x 3)

Giải:

a) Vì x5+ x3+ x2 + 1

= x3(x2 + 1) + x2 + 1

= (x2 + 1)(x3 + 1)

nên (x5 + x3 + x2 + 1):(x3 + 1)

= (x2 + 1)(x3 + 1):(x3 + 1)

= (x2 + 1)

b)Vì x2 5x + 6

= x2 3x 2x + 6

= x(x 3) 2(x 3)

= (x 3)(x 2)

nên (x2 5x + 6):(x 3)

= (x 3)(x 2): (x 3)

= (x 2)

Tham khảo thêm:   Hoa mai: Ý nghĩa, cách trồng và chăm sóc hoa mai

Bài 5 

Thực hiện phép chia đa thức sau đây bằng cách phân tích đa thức bị chia thành nhân tử:

a) (x^5+x^3+x^2+1):(x^3+1)

b) (x^2-5x+6):(x-3)

Giải:

a) Vì x^5+x^3+x^2+1=x^3(x^2+1)+x^2+1=(x^2+1)(x^3+1)

nên (x^5+x^3+x^2+1):(x^3+1)=(x^2+1)(x^3+1):(x^3+1)=(x^2+1)

b) Vì x^2-5x+6=x^2-3x-2x+6=x(x-3)-2(x-3)=(x-3)(x-2)

nên (x^2-5x+6):(x-3)=(x-3)(x-2):(x-3)=(x-2)

Bài 6

a) y^4+64=y^4+16y^2+64-16y^2

=(y^2+8)^2-(4y)^2

=(y^2+8-4y)(y^2+8+4y)

b) x^2+4=x^2+4x+4-4x

=(x+2)^2-4x=(x+2)^2-(2sqrt{x})^2

=(x-2sqrt{x}+2)(x+2sqrt{x}+2)

Bài 7′ Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử:

a. {x^2} - 7x + 6

b. {x^2} - 3x - 10

c. 2{x^2} + 5x - 3

d. 6{x^2} + x - 7

Gợi ý đáp án

a. Ta có:

begin{matrix}
  {x^2} - 7x + 6 hfill \
   = {x^2} - x - 6x + 6 hfill \
   = xleft( {x - 1} right) - 6left( {x - 1} right) hfill \
   = left( {x - 6} right)left( {x - 1} right) hfill \ 
end{matrix}

b. Ta có:

begin{matrix}  {x^2} - 3x - 10 hfill \   = {x^2} + 2x - 5x - 10 hfill \   = xleft( {x + 2} right) - 5left( {x + 2} right) hfill \   = left( {x - 5} right)left( {x + 2} right) hfill \ end{matrix}

c. Ta có:

begin{matrix}
  2{x^2} + 5x - 3 hfill \
   = 2{x^2} + 6x - x - 3 hfill \
   = 2xleft( {x + 3} right) - left( {x + 3} right) hfill \
   = left( {x + 3} right)left( {2x - 1} right) hfill \ 
end{matrix}

d. Ta có:

begin{matrix}
  6{x^2} + x - 7 hfill \
   = 6{x^2} - 6x + 7x - 7 hfill \
   = 6xleft( {x - 1} right) + 7left( {x - 1} right) hfill \
   = left( {6x + 7} right)left( {x - 1} right) hfill \ 
end{matrix}

IV. Bài tập tự luyện phân tích đa thức thành nhân tử

Bài 1: Phân tích các đa thức sau thành nhân tử:

a) x2– y2 – 2x + 2y

b) 2x + 2y – x2 – xy

c) 3a2– 6ab + 3b2 – 12c2

d) x2 – 25 + y2 + 2xy

e) a2+ 2ab + b2 – ac – bc

f) x2 – 2x – 4y2 – 4y

g) x2y – x3– 9y + 9x

h) x2(x -1) + 16(1- x)

Bài 2:Phân tích các đa thức sau thành nhân tử:

1) 4x2 – 25 + (2x + 7)(5 – 2x)

2) 3(x+ 4) – x2 – 4x

3) 5x2 – 5y2 – 10x + 10y

4) x2 – xy + x – y

5) ax – bx – a2 + 2ab – b2

6) x2 + 4x – y2 + 4

7) x3 – x2 – x + 1

8) x4 + 6x2y + 9y2 – 1

9) x3 + x2y – 4x – 4y

10) x3 – 3x2 + 1 – 3x

11) 3x2 – 6xy + 3y2 – 12z2

12) x2 – 2x – 15

13) 2x2 + 3x – 5

14) 2x2 – 18

15) x2 – 7xy + 10y2

16) x3 – 2x2 + x – xy2

Bài tập 3: Phân tích đa thức thành nhân tử.

1. x2+ 2xy – 8y2+ 2xz + 14yz – 3z2

2. 3x2– 22xy – 4x + 8y + 7y2+ 1

3. 12x2+ 5x – 12y2+ 12y – 10xy – 3

4. 2x2– 7xy + 3y2+ 5xz – 5yz + 2z2

5. x2+ 3xy + 2y2+ 3xz + 5yz + 2z2

6. x2– 8xy + 15y2+ 2x – 4y – 3

7. x4– 13x2+ 36

8. x4+ 3x2– 2x + 3

9. x4+ 2x3+ 3x2 + 2x + 1

Bài tập 4: Phân tích đa thức thành nhân tử:

1. (a – b)3+ (b – c)3+ (c – a)3

2. (a – x)y3– (a – y)x3– (x – y)a3

3. x(y2– z2) + y(z2– x2) + z(x2 – y2)

4. (x + y + z)3– x3– y3 – z3

5. 3x5– 10x4– 8x3 – 3x2 + 10x + 8

6. 5x4+ 24x3– 15x2 – 118x + 24

7. 15x3+ 29x2– 8x – 12

8. x4– 6x3+ 7x2 + 6x – 8

9. x3+ 9x2+ 26x + 24

Bài tập 5: Phân tích đa thức thành nhân tử.

1. a(b + c)(b2– c2) + b(a + c)(a2– c2) + c(a + b)(a2 – b2)

2. ab(a – b) + bc(b – c) + ca(c – a)

3. a(b2– c2) – b(a2– c2) + c(a2 – b2)

4. (x – y)5+ (y – z)5+ (z – x)5

5. (x + y)7– x7– y7

6. ab(a + b) + bc(b + c) + ca(c + a) + abc

7. (x + y + z)5– x5– y5 – z5

8. a(b2+ c2) + b(c2+ a2) + c(a2 + b2) + 2abc

Tham khảo thêm:   Hướng dẫn cách tải video trên tiktok về điện thoại và máy tính

9. a3(b – c) + b3(c – a) + c3(a – b)

10. abc – (ab + bc + ac) + (a + b + c) – 1

Bài tập 6: Phân tích đa thức thành nhân tử.

1. (x2+ x)2+ 4x2 + 4x – 12

2. (x2+ 4x + 8)2+ 3x(x2 + 4x + 8) + 2x2

3. (x2+ x + 1)(x2+ x + 2) – 12

4. (x + 1)(x + 2)(x + 3)(x + 4) – 24

5. (x2+ 2x)2+ 9x2 + 18x + 20

6. x2– 4xy + 4y2– 2x + 4y – 35

7. (x + 2)(x + 4)(x + 6)(x + 8) + 16

8. (x2+ x)2+ 4(x2 + x) – 12

9. 4(x2+ 15x + 50)(x2+ 18x + 72) – 3x2

Bài 7: Phân tích đa thức thành nhân tử.

1.

16x3y + 0,25yz3

21.

(a + b + c)2 + (a + b – c)2 – 4c2

2.

x 4 – 4x3 + 4x2

22.

4a2b2 – (a2 + b2 – c2)2

3.

2ab2 – a2b – b3

23.

a 4 + b4 + c4 – 2a2b2 – 2b2c2 – 2a2c2

4.

a 3 + a2b – ab2 – b3

24.

a(b3 – c3) + b(c3 – a3) + c(a3 – b3)

5.

x 3 + x2 – 4x – 4

25.

a 6 – a4 + 2a3 + 2a2

6.

x 3 – x2 – x + 1

26.

(a + b)3 – (a – b)3

7.

x 4+ x3 + x2 – 1

27.

X 3 – 3x2 + 3x – 1 – y3

8.

x 2y2 + 1 – x2 – y2

28.

X m + 4 + xm + 3 – x – 1

10.

x 4 – x2 + 2x – 1

29.

(x + y)3 – x3 – y3

11.

3a – 3b + a2 – 2ab + b2

30.

(x + y + z)3 – x3 – y3 – z3

12.

a 2 + 2ab + b2 – 2a – 2b + 1

31.

(b – c)3 + (c – a)3 + (a – b)3

13.

a 2 – b2 – 4a + 4b

32.

x3 + y3+ z3 – 3xyz

14.

a 3 – b3 – 3a + 3b

33.

(x + y)5 – x5 – y5

15.

x 3 + 3x2 – 3x – 1

34.

(x2 + y2)3 + (z2 – x2)3 – (y2 + z2)3

16.

x 3 – 3x2 – 3x + 1

35.

x3 – 5x2y – 14xy2

17.

x 3 – 4x2 + 4x – 1

36.

x4 – 7x2 + 1

18.

4a2b2 – (a2 + b2 – 1)2

37.

4x4 – 12x2 + 1

19.

(xy + 4)2 – (2x + 2y)2

38.

x2 + 8x + 7

20.

(a2 + b2 + ab)2 – a2b2 – b2c2 – c2a2

39.

x3 – 5x2 – 14x

Bài 8: Phân tích đa thức thành nhân tử.

1.

x4y4 + 4

6

x7 + x2 + 1

2.

x4y4 + 64

7

x8 + x + 1

3.

4 x4y4 + 1

8

x8 + x7 + 1

4.

32x4 + 1

9

x8 + 3x4 + 1

5.

x4 + 4y4

10

x10 + x5 + 1

Bài tập 9: Phân tích đa thức sau thành nhân tử

a) (x2 + 3x + 1)(x2 + 3x + 2) – 30

b) 4x4 – 8x3 + 3x2 – 8x + 4

c) 2x4 – 15x3 + 35x2 – 30x + 8

d) 2x3 – x2 + 5x + 3

Bài tập 10: Phân tích đa thức thành nhân tử:

a. 5{x^2}{y^2} - 25{x^3}{y^4} + 10{x^3}{y^3}

b. 12{x^2}y - 18x{y^2} - 30{y^2}

Bài tập 11: Phân tích đa thức thành nhân tử:

a. 6{x^2} - 11x + 3

b. 2{x^2} + 3x - 27

c. 2{x^2} - 5xy - 3{y^2}

d. {x^3} + 2x - 3

e. {x^3} - 7x + 6

f. {x^3} + 5{x^2} + 8x + 4

g. {x^3} - 9{x^2} + 6x + 16

h. {x^3} + {x^2} - x + 2

Bài tập 4: Dùng phương pháp tách hạng tử và thêm bớt cùng hạng tử phân tích các đa thức dưới đây thành nhân tử:

a) 4x2 + 16x – 9 b) -5x2 – 29x – 20
c) x2 + 2x – 3 d) 3x2 – 11x + 6
e) 6x2 + 7x + 2 f) x2 – 6x + 8
g) 9x2 + 6x – 8 h) 3x2 – 8x + 4

Cảm ơn bạn đã theo dõi bài viết Bài tập phân tích đa thức thành nhân tử Bài tập Toán lớp 8 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *