Bạn đang xem bài viết ✅ Xét hàm số liên tục trên một tập Ôn tập Toán lớp 11 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Xét hàm số liên tục trên một tập là một trong những nội dung quan trọng trong chương trình môn Toán lớp 11.

Tài liệu bao gồm toàn bộ kiến thức về phương pháp, ví dụ xét hàm số liên tục trên một tập và các bài tập kèm theo. Hi vọng thông qua tài liệu này các bạn có thêm nhiều tư liệu tham khảo, trau dồi củng cố kiến thức để nhanh chóng giải được các bài toán 11. Chúc các bạn học tốt.

I. Phương pháp xét hàm số liên tục trên một tập

Sử dụng các định lí về tính liên tục của hàm đa thức, lượng giác, phân thức hữu tỉ …

Nếu hàm số dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của khoảng đó.

II. Ví dụ xét hàm số liên tục trên một tập

1. Ví dụ 1: Xét tính liên tục của hàm số y=f(x)=left{ begin{matrix}  frac{{{x}^{2}}-5x+6}{2{{x}^{3}}-16}&text{   x<2}  \
	   2-x&text{                x}ge text{2}  \
	end{matrix} right. trên mathbb{R}

Tham khảo thêm:   Đề thi giải toán trên Máy tính cầm tay cấp tỉnh Tuyên Quang môn Toán THPT (2009 - 2010) Sở GD&ĐT Tuyên Quang

Lời giải:

  • Tập xác định D = mathbb{R}
  • Với x<2Rightarrow f(x)=frac{{{x}^{2}}-5x+6}{2{{x}^{3}}-16}Rightarrow Hàm số liên tục.
  • Với x>2Rightarrow f(x)=2-xRightarrow Hàm số liên tục.
  • Tại x = 2 ta có: f(2)=0

begin{align}

 underset{xto {{2}^{+}}}{mathop{lim }},f(x)=underset{xto {{2}^{+}}}{mathop{lim }},(2-x)=0 \



end{align}

underset{xto {{2}^{-}}}{mathop{lim }},f(x)=underset{xto {{2}^{-}}}{mathop{lim }},frac{{{x}^{2}}-5x+6}{2{{x}^{3}}-16}=underset{xto {{2}^{-}}}{mathop{lim }},frac{(x-2)(x-3)}{2(x-2)({{x}^{2}}+2x+4)}

=underset{xto {{2}^{-}}}{mathop{lim }},frac{x-3}{2({{x}^{2}}+2x+4)}=frac{-1}{24}ne f(2)

Vậy hàm số gián đoạn tại x = 2

2. Ví dụ 2: Xét tính liên tục của hàm số y=f(x)=tan 2x+cos x trên toàn trục số

Lời giải:

  • Tập xác định: D=mathbb{R}backslash left{ frac{pi }{4}+frac{kpi }{2} right}

Vậy hàm số liên tục trên D

3. Ví dụ 3: Xét tính liên tục của hàm số trên toàn trục số y=f(x)=frac{sqrt{x-1}+2}{{{x}^{2}}-3x+2}

Lời giải:

Điều kiện xác định: left{begin{matrix} x-1geq 0 \ x^{2} -3x+2neq 0end{matrix}right. Leftrightarrow left{begin{matrix} x>1 \ xneq 2 end{matrix}right.

Vậy hàm số liên tục trên khoảng (1,2)cup (2,+infty )

4. Ví dụ 4: Xác định tính liên tục của hàm số sau trên mathbb{R}:

y=f(x)=frac{x-3}{{{x}^{2}}-x-6}

Lời giải:

  • Tập xác đinh: D=mathbb{R}backslash left{ 3,-2 right}

Vậy hàm số liên tục tại mọi x thuộc D và gián đoạn tại điểm x = -2, x = 3

5. Ví dụ 5: Xét tính liên tục của hàm số trên tập xác định của chúng: f(x)=left{ begin{array}{*{35}{l}}

 frac{2-7x+5{{x}^{2}}}{x-1} & text{ khi x }>1 \

-1 & text{ khi }xle 1 \

 end{array} right.

Lời giải:

  • Tập xác định: D=R
  • Nếu x>1 thì hàm số f(x)=frac{2-7 x+5 x^{2}}{x-1} do đây là hàm phân thức hữu tỉ có tập xác định là (-infty ,1)cup (1,+infty )

Vậy nó liên tục trên khoảng (1 ;+infty)

  • Nếu x<1 thì hàm số f(x)=1. Đây là hàm đa thức có tập xác định là R. Vậy nó liên tục trên mỗi khoảng (-infty ; 1)
  • Nếu x = 1,f(1)=-1

lim _{x rightarrow 1^{+}} f(x)=lim _{x rightarrow 1^{+}} frac{2-7 x+5 x^{2}}{x^{2}+x-2}=lim _{x rightarrow 1^{+}} frac{(x-1)(5 x-2)}{(x-1)}

=lim _{x rightarrow 1}(5 x-2)=3

lim_{{x rightarrow 1^{-}}}  f(x)=lim _{x rightarrow 1^{-}}-1=-1

Do: lim _{x rightarrow 1^{+}} f(x) neq lim _{x rightarrow 1^{-}} f(x)=f(1) nên hàm số mathrm{f}(mathrm{x}) gián đoạn tại x_{0}=1

Vây hàm số f(x) liên tục trên (-infty ;1)cup (1;+infty ) và gián đoạn tại x = 1.

III. Bài tập xét hàm số liên tục trên một tập

Định tính liên tục của hàm số dưới đây trên tập xác định của chúng:

1. f(x)=left{begin{array}{l}frac{x-5}{x^{2}-25} quad &text { khi } x>5 \ (x-5)^{2}+frac{1}{10} &text { khi } x leq 5end{array}right.

2. f(x)=left{begin{array}{ll}frac{x^{4}-1}{x^{3}-1} & text { khi } x<1 \ -2 x & text { khi } x geq 1end{array}right.

3. f(x)=left{begin{array}{ll}frac{x^{3}-3 x^{2}+3 x-1}{x-1} & text { khi } x<1 \ -2 x & text { khi } x geq 1end{array}right.

4. f(x)=left{begin{array}{ll}1-x & text { khi } x leq 3 \ frac{x^{2}-2 x-3}{2 x-6} & text { khi } x>3end{array}right.

5.f(x)=left{begin{array}{ll}x^{2}-3 x+4 & text { khi } x<2 \ 5 & text { khi } x=2 \ 2 x+1 & text { khi } x>2end{array}right.

6. f(x)=left{begin{array}{ll}1-cos x & text { khi } x leq 0 \ sqrt{x+1} & text { khi } x>0end{array}right.

7. y=f(x)=sqrt{3{{x}^{2}}-1} trên mathbb{R}

8. y=f(x)=2sin x+3tan 2x trên R

Ngoài ra các bạn tham khảo thêm một số tài liệu khác như:

  • Góc giữa hai mặt phẳng
  • Công thức cấp số cộng
  • Hướng dẫn giải các dạng toán tổ hợp và xác suất
  • Phương pháp giải các dạng toán phép biến hình
  • Tóm tắt kiến thức và phương pháp giải Toán lớp 11
Tham khảo thêm:   Dẫn chứng về lòng biết ơn Ví dụ về lòng biết ơn trong cuộc sống

Cảm ơn bạn đã theo dõi bài viết Xét hàm số liên tục trên một tập Ôn tập Toán lớp 11 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *