Bạn đang xem bài viết ✅ Toán 9 Luyện tập chung trang 63 Giải Toán 9 Kết nối tri thức tập 1 trang 63, 64 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán lớp 9 Luyện tập chung bao gồm đáp án chi tiết cho từng phần, từng bài tập trong SGK Toán 9 Kết nối tri thức với cuộc sống tập 1 trang 63, 64.

Lời giải Toán 9 KNTT trang 63, 64 trình bày khoa học, biên soạn dễ hiểu, giúp các em nâng cao kỹ năng giải Toán 9, từ đó học tốt môn Toán lớp 9 hơn. Đồng thời, cũng giúp thầy cô nhanh chóng soạn giáo án Luyện tập chung Chương III: Căn bậc hai và căn bậc ba. Mời thầy cô và các em cùng theo dõi bài viết dưới đây của Wikihoc.com:

Giải Toán 9 Kết nối tri thức Tập 1 trang 64

Bài 3.28

Rút gọn các biểu thức sau:

a)frac{{5 + 3sqrt 5 }}{{sqrt 5 }} - frac{1}{{sqrt 5 - 2}};

b) sqrt {{{left( {sqrt 7 - 2} right)}^2}} - sqrt {63} + frac{{sqrt {56} }}{{sqrt 2 }};

c) frac{{sqrt {{{left( {sqrt 3 + sqrt 2 } right)}^2}} + sqrt {{{left( {sqrt 3 - sqrt 2 } right)}^2}} }}{{2sqrt {12} }};

d)frac{{sqrt[3]{{{{left( {sqrt 2 + 1} right)}^3}}} - 1}}{{sqrt {50} }}.

Lời giải:

a) frac{{5 + 3sqrt 5 }}{{sqrt 5 }} - frac{1}{{sqrt 5 - 2}};

begin{array}{l} = frac{{left( {5 + 3sqrt 5 } right).sqrt 5 }}{{sqrt 5 .sqrt 5 }} - frac{{sqrt 5 + 2}}{{left( {sqrt 5 - 2} right)left( {sqrt 5 + 2} right)}}\ = frac{{5sqrt 5 + 15}}{5} - frac{{sqrt 5 + 2}}{{5 - 4}}end{array}

begin{array}{l} = sqrt 5 + 3 - left( {sqrt 5 + 2} right)\ = 1end{array}

b) sqrt {{{left( {sqrt 7 - 2} right)}^2}} - sqrt {63} + frac{{sqrt {56} }}{{sqrt 2 }}

begin{array}{l} = left| {sqrt 7 - 2} right| - sqrt {9.7} + frac{{sqrt {2.28} }}{{sqrt 2 }}\ = sqrt 7 - 2 - 3sqrt 7 + sqrt {28} \ = - 2 - 2sqrt 7 + sqrt {4.7} end{array}

begin{array}{l} = - 2 - 2sqrt 7 + 2sqrt 7 \ = - 2end{array}

c) frac{{sqrt {{{left( {sqrt 3 + sqrt 2 } right)}^2}} + sqrt {{{left( {sqrt 3 - sqrt 2 } right)}^2}} }}{{2sqrt {12} }}

begin{array}{l} = frac{{left| {sqrt 3 + sqrt 2 } right| + left| {sqrt 3 - sqrt 2 } right|}}{{2sqrt {4.3} }}\ = frac{{sqrt 3 + sqrt 2 + sqrt 3 - sqrt 2 }}{{4sqrt 3 }}\ = frac{{2sqrt 3 }}{{4sqrt 3 }}\ = frac{1}{2}end{array}

d) frac{{sqrt[3]{{{{left( {sqrt 2 + 1} right)}^3}}} - 1}}{{sqrt {50} }}

begin{array}{l} = frac{{sqrt 2 + 1 - 1}}{{sqrt {25.2} }}\ = frac{{sqrt 2 }}{{5sqrt 2 }}\ = frac{1}{5}end{array}

Bài 3.29

Tính giá trị của các biểu thức sau:

a) 3sqrt {45} + frac{{5sqrt {15} }}{{sqrt 3 }} - 2sqrt {245};

b)frac{{sqrt {12} - sqrt 4 }}{{sqrt 3 - 1}} - frac{{sqrt {21} + sqrt 7 }}{{sqrt 3 + 1}} + sqrt 7 ;

c)frac{{3 - sqrt 3 }}{{1 - sqrt 3 }} + sqrt 3 left( {2sqrt 3 - 1} right) + sqrt {12} ;

d) frac{{sqrt 3 - 1}}{{sqrt 2 }} + frac{{sqrt 2 }}{{sqrt 3 - 1}} - frac{6}{{sqrt 6 }}.

Lời giải:

a) 3sqrt {45} + frac{{5sqrt {15} }}{{sqrt 3 }} - 2sqrt {245}

begin{array}{l} = 3sqrt {9.5} + frac{{5sqrt {3.5} }}{{sqrt 3 }} - 2sqrt {49.5} \ = 9sqrt 5 + 5sqrt 5 - 14sqrt 5 \ = 0end{array}

b) frac{{sqrt {12} - sqrt 4 }}{{sqrt 3 - 1}} - frac{{sqrt {21} + sqrt 7 }}{{sqrt 3 + 1}} + sqrt 7

begin{array}{l} = frac{{sqrt 4 left( {sqrt 3 - 1} right)}}{{sqrt 3 - 1}} - frac{{sqrt 7 left( {sqrt 3 + 1} right)}}{{sqrt 3 + 1}} + sqrt 7 \ = 2 - sqrt 7 + sqrt 7 \ = 2end{array}

c) frac{{3 - sqrt 3 }}{{1 - sqrt 3 }} + sqrt 3 left( {2sqrt 3 - 1} right) + sqrt {12}

begin{array}{l} = frac{{sqrt 3 left( {sqrt 3 - 1} right)}}{{ - left( {sqrt 3 - 1} right)}} + 6 - sqrt 3 + sqrt {4.3} \ = - sqrt 3 + 6 - sqrt 3 + 2sqrt 3 \ = 6end{array}

d) frac{{sqrt 3 - 1}}{{sqrt 2 }} + frac{{sqrt 2 }}{{sqrt 3 - 1}} - frac{6}{{sqrt 6 }}

= frac{{left( {sqrt 3 - 1} right)sqrt 2 }}{{sqrt 2 .sqrt 2 }} + frac{{sqrt 2 left( {sqrt 3 + 1} right)}}{{left( {sqrt 3 - 1} right)left( {sqrt 3 + 1} right)}} - frac{{sqrt 6 .sqrt 6 }}{{sqrt 6 }}

begin{array}{l} = frac{{sqrt 6 - sqrt 2 }}{2} + frac{{sqrt 6 + sqrt 2 }}{{3 - 1}} - sqrt 6 \ = frac{{sqrt 6 - sqrt 2 + sqrt 6 + sqrt 2 }}{2} - sqrt 6 \ = sqrt 6 - sqrt 6 \ = 0end{array}

Bài 3.30

Giả sử lực F của gió khi thổi theo phương vuông góc với bề mặt cánh buồm của một con thuyền tỉ lệ thuận với bình phương tốc độ của gió, hệ số tỉ lệ là 30. Trong đó, lực F được tính bằng N (Newton) và tốc độ được tính bằng m/s.

Tham khảo thêm:   Kỹ thuật di chuyển và các kiểu nhảy trong Counter-Strike

a) Khi tốc độ của gió là 10 m/s thì lực F bằng bao nhiêu Newton?

b) Nếu cánh buồm chỉ có thể chịu được một áp lực tối đa là 12000 N thì con thuyền đó có thể đi được trong gió với tốc độ gió tối đa là bao nhiêu?

Lời giải:

a) Khi tốc độ gió là 10 m/s là:

F = {10^2}.30 = 3000left( N right)

b) Nếu lực tối đa là 12000 N thì ta có tốc độ gió là:

sqrt {12000:30} = 20 (m/s) .

Vậy con thuyền có thể đi được trong gió với tốc độ gió tối đa là 20 m/s.

Bài 3.31

Rút gọn các biểu thức sau:

a)sqrt[3]{{{{left( { - x - 1} right)}^3}}};

b) sqrt[3]{{8{x^3} - 12{x^2} + 6x - 1}}.

Cảm ơn bạn đã theo dõi bài viết Toán 9 Luyện tập chung trang 63 Giải Toán 9 Kết nối tri thức tập 1 trang 63, 64 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *