Bạn đang xem bài viết ✅ Toán 9 Bài tập cuối chương I Giải Toán 9 Kết nối tri thức tập 1 trang 24, 25 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán lớp 9 Bài tập cuối chương I bao gồm đáp án chi tiết cho từng phần, từng bài tập trong SGK Toán 9 Kết nối tri thức với cuộc sống tập 1 trang 24, 25.

Lời giải Toán 9 KNTT trang 24, 25 trình bày khoa học, biên soạn dễ hiểu, giúp các em nâng cao kỹ năng giải Toán 9, từ đó học tốt môn Toán lớp 9 hơn. Đồng thời, cũng giúp thầy cô nhanh chóng soạn giáo án Bài tập cuối chương I: Phương trình và hệ hai phương trình bậc nhất hai ẩn. Mời thầy cô và các em cùng theo dõi bài viết dưới đây của Wikihoc.com:

Giải Toán 9 Kết nối tri thức Tập 1 trang 24 – Trắc nghiệm

Bài 1.19

Cặp số nào sau đây là nghiệm của hệ phương trình left{ begin{array}{l}5x + 7y =  - 1\3x + 2y =  - 5end{array} right.?

A. (–1; 1).

B. (–3; 2).

C. (2; –3).

D. (5; 5).

Đáp án: B

Bài 1.20

Trên mặt phẳng tọa độ Oxy, cho các điểm A(1; 2), B(5; 6), C(2; 3), D(–1; –1). Đường thẳng 4x – 3y = –1 đi qua hai điểm nào trong các điểm đã cho?

A. A và B.

B. B và C.

C. C và D.

D. D và A.

Đáp án: C

Bài 1.21

Hệ phương trình left{ begin{array}{l}1,5x - 0,6y = 0,3\ - 2x + y =  - 2end{array} right.

A. Có nghiệm là (0; −0,5).

B. Có nghiệm là (1; 0).

C. Có nghiệm là (−3; −8).

D. Vô nghiệm.

Đáp án: C

Bài 1.22

Hệ phương trình left{ begin{array}{l}0,6x + 0,3y = 1,8\ 2x + y =  - 6end{array} right.

A. Có một nghiệm.

B. Vô nghiệm.

C. Có vô số nghiệm.

D. Có hai nghiệm.

Đáp án: B

Giải Toán 9 Kết nối tri thức Tập 1 trang 24, 25 – Tự luận

Bài 1.23

Giải các hệ phương trình:

Tham khảo thêm:   Địa lí 10 Bài 3: Sử dụng bản đồ trong học tập và đời sống, một số ứng dụng của GPS và bản đồ số trong đời sống Soạn Địa 10 trang 12 sách Kết nối tri thức với cuộc sống

a) left{ begin{array}{l} 2x + 5y = 10 \ frac{2}{5} x+y=1end{array} right.

b) left{ begin{array}{l} 0,2x + 0,1y = 0,3\ 3x + y = 5end{array} right.

c) left{ begin{array}{l}  frac{3}{2} x - y= frac{1}{2}  \ 6x - 4y= 2end{array} right.

Lời giải:

a)left{ begin{array}{l} 2x + 5y = 10 \ frac{2}{5} x+y=1end{array} right.

Nhân hai vế của phương trình thứ hai với 5, ta được hệ left{ begin{array}{l} 2x + 5y = 10 \ 2 x+5y=5end{array} right.

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ mới ta được

0x + 0y = 5 (1).

Do không có giá trị nào của x, y thỏa mãn hệ thức (1) nên hệ phương trình đã cho vô nghiệm.

b)left{ begin{array}{l} 0,2x + 0,1y = 0,3\ 3x + y = 5end{array} right.

Chia hai vế của phương trình thứ nhất cho 0,1 ta được hệ left{ begin{array}{l} 2x + y = 3\ 3x + y = 5end{array} right.

Trừ từng vế phương trình thứ hai cho phương trình thứ nhất của hệ mới ta được

x = 2

Thế x = 2 vào phương trình thứ hai của hệ đã cho, ta được 3 . 2 + y = 5, suy ra y = – 1.

Vậy hệ phương trình đã cho có nghiệm là (2; – 1).

c)left{ begin{array}{l}  frac{3}{2} x - y= frac{1}{2}  \ 6x - 4y= 2end{array} right.

Nhân hai vế của phương trình thứ nhất với 4, ta được hệ left{ begin{array}{l} 6 x -4 y= 2  \ 6x - 4y= 2end{array} right.

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ mới ta được

0x + 0y = 0 (2).

Hệ thức (2) luôn thỏa mãn với các giá trị tùy ý của x và y.

Với giá trị tùy ý của y, giá trị của x được tính nhờ hệ thức frac{3}{2}x-y=frac{1}{2}, suy ra y=frac{3}{2}x-frac{1}{2}.

Vậy hệ phương trình đã cho có nghiệm là left(x; frac{3}{2}x-frac{1}{2}right) với x ∈ N.

Bài 1.24

Giải các hệ phương trình:

a) left{ begin{array}{l} 0,5x + 2y = -2,5 \ 0,7x - 3y = 8,1end{array} right.

b) left{ begin{array}{l} 5x - 3y = -2 \ 14x + 8y = 19 end{array} right.

c) left{ begin{array}{l} 2(x-2) + 3(1+y) = - 2 \ 3(x - 2) - 2(1 + y)= - 3end{array} right.

Lời giải:

a)left{ begin{array}{l} 0,5x + 2y = -2,5 \ 0,7x - 3y = 8,1end{array} right.

Nhân cả hai vế của phương trình thứ nhất với 3 và phương trình thứ hai với 2 ta được

left{ begin{array}{l} 1,5x + 6y = -7,5 \ 1,4x - 6y = 16,2 end{array} right.

Cộng từng vế hai phương trình của hệ mới, ta được

2,9x = 8,7. Suy ra x = 3

Thế x = 3 vào phương trình thứ nhất của hệ đã cho, ta được 0,5 . 3 + 2y = – 2,5, suy ra y = – 2.

Vậy hệ phương trình đã cho có nghiệm là (3; – 2).

b)left{ begin{array}{l} 5x - 3y = -2 \ 14x + 8y = 19 end{array} right.

Nhân cả hai vế của phương trình thứ nhất với 8 và phương trình thứ hai với 8 ta được

left{ begin{array}{l} 40x - 24y = -16 \ 42x + 24y = 57 end{array} right.

Cộng từng vế hai phương trình của hệ mới, ta được

82x = 41. Suy ra x=frac{1}{2}

Thế x=frac{1}{2} vào phương trình thứ nhất của hệ đã cho, ta được 5.frac{1}{2}-3y=-2, suy ra y=frac{3}{2}.

Vậy hệ phương trình đã cho có nghiệm là left(frac{1}{2}; frac{3}{2}right).

c)left{ begin{array}{l} 2(x-2) + 3(1+y) = - 2 \ 3(x - 2) - 2(1 + y)= - 3end{array} right.

Đưa phương trình về dạng đơn giản, ta có:

left{ begin{array}{l} 2x-4 + 3y +3 = - 2 \ 3x - 6 - 2y - 2= - 3end{array} right. hay left{ begin{array}{l} 2x + 3y  = -1 \ 3x  - 2y=  5end{array} right. (1)

Nhân cả hai vế phương trình thứ nhất với 2 và phương trình thứ hai với 3 của hệ (1) ta được

Tham khảo thêm:   Hướng dẫn tổ chức Đại hội Công đoàn bộ phận nhiệm kỳ 2017 - 2022 Tổ chức Đại hội Công đoàn bộ phận

left{ begin{array}{l} 4x + 6y  = -2 \ 9x  - 6y=  15end{array} right.

Cộng từng vế hai phương trình của hệ mới, ta được

13x = 13. Suy ra x = 1

Thế x = 1 vào phương trình thứ nhất của hệ (1), ta được 2 . 1 + 3y = – 1, suy ra y = – 1.

Vậy hệ phương trình đã cho có nghiệm là (1; – 1).

Bài 1.25

Tìm số tự nhiên n có hai chữ số, biết rằng nếu viết thêm chữ số 3 vào giữa hai chữ số của số n thì được một số lớn hơn số 2 n là 585 đơn vị, và nếu viết hai chữ số của số n theo thứ tự ngược lại thì được một số nhỏ hơn số n là 18 đơn vị.

Lời giải:

Gọi số tự nhiên n cần tìm có dạng overline{ab}  (0< a le 9, 0 le b  le 9, a,b in N)

* Nếu viết thêm chữ số 3 vào giữa hai chữ số của số n thì được số mới là overline{a3b}

Do số đó lớn hơn số 2n là 585 đơn vị nên ta có phương trình:

overline{a3b}-2overline{ab}=585

100a + 30 + b – 2(10a + b) = 585

80a – b = 555 (1)

* Nếu viết hai chữ số của số n theo thứ tự ngược lại thì được số mới là overline{ba}

Do số đó nhỏ hơn số n là 18 đơn vị nên ta có phương trình:

overline{ba}-overline{ab}=18

hay a – b = 2 (2)

Từ (1) và (2) ta có hệ phương trình:

left{ {begin{array}{*{20}{1}} 80a - b = 555 \ a - b = 2 end{array}} right.

Trừ từng vế của phương trình thứ nhất cho phương trình thứ hai ta được:

79a = 553, suy ra a = 7

Thế a = 7 vào phương trình thứ hai của hệ ta được 7 – b = 2, suy ra b = 5

Các giá trị a = 7 và b = 5 thỏa mãn điều kiện của ẩn.

Vậy số tự nhiên n cần tìm là 75.

Bài 1.26

Trên cánh đồng có diện tích 160 ha của một đơn vị sản xuất, người ta dành 60 ha để cấy thí nghiệm giống lúa mới, còn lại vẫn cấy giống lúa cũ. Khi thu hoạch, đầu tiên người ta gặt 8 ha giống lúa cũ và 7 ha giống lúa mới để đối chứng. Kết quả 7 ha giống lúa mới cho thu hoạch nhiều hơn 8 ha giống lúa cũ là 2 tấn thóc. Biết rằng tổng số thóc (cả hai giống) thu hoạch cả vụ trên 160 ha là 860 tấn. Hỏi năng suất của mỗi giống lúa trên 1 ha là bao nhiêu tấn thóc?

Tham khảo thêm:   Bản kê khai về người phải trực tiếp nuôi dưỡng Mẫu 09/XN-NPT-TNCN theo Thông tư 92/2015/TT-BTC

Lời giải:

Gọi x (tấn), y (tấn) lần lượt là năng suất của giống lúa cũ và mới trên 1 ha. (x, y > 0).

* 8 ha giống lúa cũ thu hoạch được 8x (tấn thóc)

7 ha giống lúa mới thu hoạch được 7y (tấn thóc)

Do 7 ha giống lúa mới cho thu hoạch nhiều hơn 8 ha giống lúa cũ là 2 tấn thóc nên ta có phương trình:

7y – 8x = 2 (1)

* Diện tích cấy giống lúa cũ là: 160 – 60 = 100 (ha)

100 ha giống lúa cũ thu hoạch được 100x (tấn)

60 ha giống lúa mới thu hoạch được 60y (tấn)

Do tổng số thóc thu hoạch cả vụ trên 160 ha là 860 tấn nên ta có phương trình:

100x + 60y = 860 hay 5x + 3y = 43 (2)

Từ (1) và (2) ta có hệ phương trình:

left{ {begin{array}{*{20}{1}} 7y - 8x = 2 \ 5x +3y= 43end{array}} right. hay left{ {begin{array}{*{20}{1}} -8x+7y = 2 \ 5x +3y= 43end{array}} right. (1)

Nhân cả hai vế phương trình thứ nhất với 5 và phương trình thứ hai với 8 của hệ ta được

left{ {begin{array}{*{20}{1}} -40x+35y = 10 \ 40x +24y= 344end{array}} right.

Cộng từng vế hai phương trình của hệ mới, ta được

59y = 354, suy ra y = 6

Thế y = 6 vào phương trình thứ nhất của hệ (1), ta được – 8x + 7 . 6 = 2, suy ra x = 5.

Các giá trị x = 5 và y = 6 thỏa mãn điều kiện của ẩn.

Vậy năng suất của giống lúa cũ và mới trên 1 ha lần lượt là: 5 tấn thóc và 6 tấn thóc.

Bài 1.27

Hai vật chuyển động đều trên một đường tròn đường kính 20 cm, xuất phát cùng một lúc, từ cùng 1 điểm. Nếu chuyển động ngược chiều thì cứ sau 4 giây chúng lại gặp nhau. Nếu chuyển động cùng chiều thì cứ 20 giây chúng lại gặp nhau. Tính vận tốc (cm/s) của mỗi vật.

Bài 1.28

Một người mua hai loại hàng và phải trả tổng cộng là 21,7 triệu đồng, kể cả thuế giá trị gia tăng (VAT) tới mức 10% đối với loại hàng thứ nhất và 8% đối với loại hàng thứ hai. Nếu thuế VAT là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 21,8 triệu đồng. Hỏi nếu không kể thuế VAT thì người đó phải trả bao nhiêu tiền cho mỗi loại hàng?

Cảm ơn bạn đã theo dõi bài viết Toán 9 Bài tập cuối chương I Giải Toán 9 Kết nối tri thức tập 1 trang 24, 25 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *