Bạn đang xem bài viết ✅ Toán 9 Bài 2: Một số phép tính về căn bậc hai của số thực Giải Toán 9 Cánh diều tập 1 trang 55, 56, 57, 58, 59, 60 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán 9 Bài 2: Một số phép tính về căn bậc hai của số thực là tài liệu vô cùng hữu ích giúp các em học sinh lớp 9 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 9 Cánh diều tập 1 trang 55, 56, 57, 58, 59, 60.

Giải bài tập Toán 9 Cánh diều tập 1 Bài 2 – Chương III: Căn thức được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh học tập. Vậy mời thầy cô và các em theo dõi bài viết dưới đây của Wikihoc.com:

Giải Toán 9 Cánh diều Tập 1 trang 59, 60

Bài 1

Tính:

a. sqrt {{{25}^2}};

b. sqrt {{{left( { - 0,16} right)}^2}};

c. sqrt {{{left( {sqrt 7 - 3} right)}^2}}.

Hướng dẫn giải

a. sqrt {{{25}^2}} = left| {25} right| = 25.

b.sqrt {{{left( { - 0,16} right)}^2}} = left| { - 0,16} right| = 0,16.

c. sqrt {{{left( {sqrt 7 - 3} right)}^2}} = left| {sqrt 7 - 3} right|

Do sqrt 7 < sqrt 9hay sqrt 7 < 3 nên sqrt 7 - 3 < 0. Vì thế, ta có: left| {sqrt 7 - 3} right| = 3 - sqrt 7 .

Vậysqrt {{{left( {sqrt 7 - 3} right)}^2}} = left| {sqrt 7 - 3} right| = 3 - sqrt 7 .

Bài 2

Áp dụng quy tắc về căn bậc hai của một tích, hãy tính:

a. sqrt {36.81}

b. sqrt {49.121.169}

c.sqrt {{{50}^2} - {{14}^2}}

d. sqrt {3 + sqrt 5 } .sqrt {3 - sqrt 5 }

Tham khảo thêm:   Nghị định 57/2020/NĐ-CP Sửa đổi Nghị định 122/2016/NĐ-CP và Nghị định 125/2017/NĐ-CP

Hướng dẫn giải

a. sqrt {36.81} = sqrt {36} .sqrt {81} = 6.9 = 54.

b. sqrt {49.121.169} = sqrt {49} .sqrt {121} .sqrt {169} = 7.11.13 = 1001.

c. sqrt {{{50}^2} - {{14}^2}} = sqrt {left( {50 - 14} right)left( {50 + 14} right)} = sqrt {36.64} = sqrt {36} .sqrt {64} = 6.8 = 48.

d. sqrt {3 + sqrt 5 } .sqrt {3 - sqrt 5 } = sqrt {left( {3 + sqrt 5 } right).left( {3 - sqrt 5 } right)} = sqrt {{3^2} - {{left( {sqrt 5 } right)}^2}} = sqrt {9 - 5} = sqrt 4 = 2.

Bài 3

Áp dụng quy tắc về căn bậc hai của một thương, hãy tính:

a. sqrt {frac{{49}}{{36}}}

b. sqrt {frac{{{{13}^2} - {{12}^2}}}{{81}}}

c. frac{{sqrt {{9^3} + {7^3}} }}{{sqrt {{9^2} - 9.7 + {7^2}} }}

d. frac{{sqrt {{{50}^3} - 1} }}{{sqrt {{{50}^2} + 51} }}

Hướng dẫn giải

a. sqrt {frac{{49}}{{36}}} = frac{{sqrt {49} }}{{sqrt {36} }} = frac{7}{6}.

b. sqrt {frac{{{{13}^2} - {{12}^2}}}{{81}}} = sqrt {frac{{left( {13 - 12} right)left( {13 + 12} right)}}{{81}}} = frac{{sqrt {1.25} }}{{sqrt {81} }} = frac{5}{9}.

c. frac{{sqrt {{9^3} + {7^3}} }}{{sqrt {9{}^2 - 9.7 + {7^2}} }} = frac{{sqrt {left( {9 + 7} right)left( {{9^2} - 9.7 + {7^2}} right)} }}{{sqrt {{9^2} - 9.7 + {7^2}} }} = frac{{sqrt {9 + 7} .sqrt {{9^2} - 9.7 + {7^2}} }}{{sqrt {{9^2} - 9.7 + {7^2}} }} = sqrt {16} = 4.

d. frac{{sqrt {{{50}^3} - 1} }}{{sqrt {{{50}^2} + 51} }} = frac{{sqrt {left( {50 - 1} right)left( {{{50}^2} + 50.1 + {1^2}} right)} }}{{sqrt {{{50}^2} + 51} }} = frac{{sqrt {49} .sqrt {{{50}^2} + 51} }}{{sqrt {{{50}^2} + 51} }} = sqrt {49} = 7.

Bài 4

Áp dụng quy tắc đưa thừa số ra ngoài dấu căn bậc hai, hãy rút gọn biểu thức:

a. sqrt {12} - sqrt {27} + sqrt {75} ;

b. 2sqrt {80} - 2sqrt 5 - 3sqrt {20} ;

c. sqrt {2,8} .sqrt {0,7} .

Hướng dẫn giải

a. sqrt {12} - sqrt {27} + sqrt {75} = sqrt {4.3} - sqrt {9.3} + sqrt {25.3} = sqrt {{2^2}.3} - sqrt {{3^2}.3} + sqrt {{5^2}.3} = 2sqrt 3 - 3sqrt 3 + 5sqrt 3 = 4sqrt 3 .

b. 2sqrt {80} - 2sqrt 5 - 3sqrt {20} = 2sqrt {16.5} - 2sqrt 5 - 3sqrt {4.5} = 2sqrt {{4^2}.5} - 2sqrt 5 - 3sqrt {{2^2}.5} = 8sqrt 5 - 2sqrt 5 - 6sqrt 5 = 0.

c.sqrt {2,8} .sqrt {0,7} = sqrt {4.0,7} .sqrt {0,7} = 2sqrt {0,7} .sqrt {0,7} = 2.0,7 = 1,4.

Bài 5

Áp dụng quy tắc đưa thừa số vào trong dấu căn bậc hai, hãy rút gọn biểu thức:

a. 9sqrt {frac{2}{9}} - 3sqrt 2

b. left( {2sqrt 3 + sqrt {11} } right)left( {sqrt {12} - sqrt {11} } right)

Hướng dẫn giải

a. 9sqrt {frac{2}{9}} - 3sqrt 2 = sqrt {{9^2}.frac{2}{9}} - sqrt {{3^2}.2} = sqrt {9.2} - sqrt {9.2} = sqrt {18} - sqrt {18} = 0

b.left( {2sqrt 3 + sqrt {11} } right)left( {sqrt {12} - sqrt {11} } right)

= left( {sqrt {{2^2}.3} + sqrt {11} } right)left( {sqrt {12} - sqrt {11} } right)

= left( {sqrt {12} + sqrt {11} } right)left( {sqrt {12} - sqrt {11} } right),

= {left( {sqrt {12} } right)^2} - {left( {sqrt {11} } right)^2} = 12 - 11 = 1

Bài 6

So sánh:

a. sqrt 3 .sqrt 7sqrt {22} ;

b. frac{{sqrt {52} }}{{sqrt 2 }} và 5;

c.3sqrt 7sqrt {65} .

Hướng dẫn giải

a. Ta có: sqrt 3 .sqrt 7 = sqrt {3.7} = sqrt {21}

Do 21 < 22 nên sqrt {21} < sqrt {22} hay sqrt {3.7} < sqrt {22} . Vậy sqrt 3 .sqrt 7 < sqrt {22} .

b. Ta có: frac{{sqrt {52} }}{{sqrt 2 }} = sqrt {frac{{52}}{2}} = sqrt {26} .

Do 26 > 25 nên sqrt {26} > sqrt {25} hay sqrt {frac{{52}}{2}} > 5. Vậy frac{{sqrt {52} }}{{sqrt 2 }} > 5.

c. Ta có: 3sqrt 7 = sqrt {{3^2}.7} = sqrt {9.7} = sqrt {63} .

Do 63 < 65 nên sqrt {63} < sqrt {65}. Vậy 3sqrt 7 < sqrt {65} .

Bài 7

Cho tam giác đều ABC có độ dài cạnh a. Tính độ dài đường cao AH của tam giác ABC theo a.

Hướng dẫn giải

Bài 7

Do AH là đường cao của tam giác đều ABC.

Suy ra AH đồng thời là đường trung tuyến của tam giác ABC.

Suy ra H là trung điểm của BC.

Suy ra HB = HC = frac{1}{2}BC = frac{1}{2}a.

Xét tam giác AHB vuông tại H có:

A{H^2} + H{B^2} = A{B^2} (Định lý Py – ta – go)

begin{array}{l}A{H^2} + {left( {frac{a}{2}} right)^2} = {a^2}\A{H^2} = {a^2} - {left( {frac{a}{2}} right)^2} = {a^2} - frac{{{a^2}}}{4} = frac{{4{a^2}}}{4} - frac{{{a^2}}}{4} = frac{{3{a^2}}}{4}\AH = frac{{asqrt 3 }}{2}.end{array}

Vậy AH = frac{{asqrt 3 }}{2}.

Bài 8

Trong Vật lí, ta có định luật Joule – Lenz để tính nhiệt lượng tỏa ra ở dây dẫn khi có dòng điện chạy qua: Q = {I^2}Rt.

Trong đó: Q là nhiệt lượng tỏa ra trên dây dẫn tính theo Jun (J);

I là cường độ dòng điện chạy trong dây dẫn tính theo Ampe (A);

Tham khảo thêm:   Thông tư số 62/2010/TT-BTC Hướng dẫn xác định nhu cầu, nguồn và phương thức chi thực hiện điều chỉnh mức lương tối thiểu chung đối với cán bộ, công chức, viên chức, lực lượng vũ trang và điều chỉnh trợ cấp đối với cán bộ xã đã nghỉ việc năm 2010

R là điện trở dây dẫn tính theo Ohmleft(Omegaright);

t là thời gian dòng điện chạy qua dây dẫn tính theo giây.

Áp dụng công thức trên để giải bài toán sau: Một bếp điện khi hoạt động bình thường có điện trở R=80Omega . Tính cường độ dòng điện chạy trong dây dẫn, biết nhiệt lượng mà dây dẫn tỏa ra trong 1 giây là 500J.

Hướng dẫn giải

Ta có: 500 = {I^2}.80.1

begin{array}{l}500 = {I^2}.80\{I^2} = frac{{25}}{4}\I = sqrt {frac{{25}}{4}} = frac{{sqrt {25} }}{{sqrt 4 }} = frac{5}{2}.end{array}

Bài 9

Tốc độ gần đúng của một ô tô ngay trước khi đạp phanh được tính theo công thức v = sqrt {2lambda gd} , trong đó vleft( {m/s} right) là tốc độ của ô tô, dleft(mright) là chiều dài của vết trượt tính từ thời điểm đạp phanh cho đến khi ô tô dừng lại trên đường, lambda là hệ số cản lăn của mặt đường, g = 9,8 m/s 2. Nếu một ô tô để lại vết trượt dài khoảng 20m trên đường nhựa thì tốc độ của ô tô trước khi đạp phanh là khoảng bao nhiêu mét trên giây (làm tròn đến kết quả đến hàng đơn vị)? Biết rằng hệ số cản lăn của đường nhựa là lambda=0,7.

Bài 7

Hướng dẫn giải

v = sqrt {2.0,7.9,8.20} = sqrt {274,4} approx 17,,left( {m/s} right).

Cảm ơn bạn đã theo dõi bài viết Toán 9 Bài 2: Một số phép tính về căn bậc hai của số thực Giải Toán 9 Cánh diều tập 1 trang 55, 56, 57, 58, 59, 60 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *