Bạn đang xem bài viết ✅ Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn Giải Toán 9 Chân trời sáng tạo tập 1 trang 6, 7, 8, 9, 10 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn là tài liệu vô cùng hữu ích giúp các em học sinh lớp 9 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 9 Chân trời sáng tạo tập 1 trang 6, 7, 8, 9, 10.

Giải bài tập Toán 9 Chân trời sáng tạo tập 1 trang 6 → 10 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 1 Chương I: Phương trình và hệ phương trình – Phần Số và đại số. Mời thầy cô và các em theo dõi bài viết dưới đây của Wikihoc.com:

Giải Toán 9 Chân trời sáng tạo Tập 1 trang 9, 10

Bài 1

Giải các phương trình sau:

a) 5x(2x – 3) = 0;

b) (2x – 5)(3x + 6) = 0;

c) (frac{2}{3} x - 1)(frac{1}{2} x + 3)=0

d) (2,5t – 7,5)(0,2t + 5) = 0.

Lời giải:

a) Ta có: 5x(2x – 3) = 0

5x = 0 hoặc 2x – 3 = 0

Tham khảo thêm:   Mẫu S12-H: Sổ tiền gửi ngân hàng, kho bạc Ban hành theo Thông tư 107/2017/TT-BTC

x = 0 hoặc x= frac{3}{2}

Vậy phương trình đã cho có hai nghiệm là x = 0 và x=frac{3}{2}

b) Ta có: (2x – 5)(3x + 6) = 0

2x – 5 = 0 hoặc 3x + 6 = 0

x= frac{5}{2} hoặc x = –2.

Vậy phương trình đã cho có hai nghiệm là x=52 và x = –2.

c) left( {frac{2}{3}x - 1} right)left( {frac{1}{2}x + 3} right) = 0

frac{2}{3}x - 1 = 0 hoặc frac{1}{2}x + 3 = 0

x = frac{3}{2} hoặc x = – 6.

Vậy nghiệm của phương trình là x = frac{3}{2} và x = – 6.

d) Ta có: (2,5t – 7,5)(0,2t + 5) = 0

2,5t – 7,5 = 0 hoặc 0,2t + 5 = 0

2,5t = 7,5 hoặc 0,2t = –5

x = 5 hoặc x = –25.

Vậy phương trình đã cho có hai nghiệm là x = 5 và x = –25.

Bài 2

Giải các phương trình sau:

a) 3x(x – 4) + 7(x – 4) = 0;

b) 5x(x + 6) – 2x – 12 = 0;

c) x2 – x – (5x – 5) = 0;

d) (3x – 2)2 – (x + 6)2 = 0.

Lời giải:

a) Ta có: 3x(x – 4) + 7(x – 4) = 0

(x – 4)(3x + 7) = 0

x – 4 = 0 hoặc 3x + 7 = 0

x = 4 hoặc x=frac{-7}{3}

Vậy phương trình đã cho có hai nghiệm là x = 4 và x=frac{-7}{3}

b) Ta có: 5x(x + 6) – 2x – 12 = 0

5x(x + 6) – 2(x + 6) = 0

(x + 6)(5x – 2) = 0

x + 6 = 0 hoặc 5x – 2 = 0

x = –6 hoặc x=frac{2}{5}

Vậy phương trình đã cho có hai nghiệm là x = –6 và x=frac{2}{5}

c) Ta có: x2 – x – (5x – 5) = 0

x(x – 1) – 5(x – 1) = 0

(x – 1)(x – 5) = 0

x – 1 = 0 hoặc x – 5 = 0

x = 1 hoặc x = 5.

Vậy phương trình đã cho có hai nghiệm là x = 1 và x = 5.

d) Ta có: (3x – 2)2 – (x + 6)2 = 0.

(3x – 2 + x + 6)(3x – 2 – x – 6) = 0.

(4x + 4)(2x – 8) = 0.

8(x + 1)(x – 4) = 0.

x + 1 = 0 hoặc x – 4 = 0

x = –1 hoặc x = 4.

Vậy phương trình đã cho có hai nghiệm là x = –1 và x = 4.

Tham khảo thêm:   Mẫu số 02-1/TAIN-DK: Bảng kê sản lượng và doanh thu bán dầu thô hoặc khí thiên nhiên khai thác Biểu mẫu thuế

Bài 3

Giải các phương trình:

a) frac{x+5}{x-3}+2=frac{2}{x-3}

b) frac{3x+5}{x+1}+frac{2}{x}=3

c) frac{x+3}{x-2}+frac{x+2}{x-3}=2

d) frac{x+2}{x-2}-frac{x-2}{x+2}=frac{16}{x^2-4}

Lời giải:

a) Điều kiện xác định: x ≠ 3.

Ta có: frac{x+5}{x-3}+2=frac{2}{x-3}

frac{x+5}{x-3}+frac{2(x-3)}{x-3} =frac{2}{x-3}

x + 5 + 2(x – 3) = 2

x + 5 + 2x – 6 = 2

3x = 3

x = 1 (thỏa mãn điều kiện)

Vậy nghiệm của phương trình đã cho là x = 1.

b) Điều kiện xác định: x ≠ – 1 và x ≠ 0

Ta có: frac{3x+5}{x+1}+frac{2}{x}=3

frac{xleft(3x+5right)}{xleft(x+1right)}+frac{2left(x+1right)}{xleft(x+1right)}=frac{3xleft(x+1right)}{xleft(x+1right)}

x(3x + 5) + 2(x + 1) = 3x(x + 1)

3x2 + 5x + 2x + 2 = 3x2 + 3x

4x = – 2

x=-frac{1}{2} (thỏa mãn điều kiện)

Vậy nghiệm của phương trình đã cho là x=-frac{1}{2}.

c) Điều kiện xác định: x ≠ 2 và x ≠ 3

Ta có: frac{left(x+3right)left(x-3right)}{left(x-2right)left(x-3right)}+frac{left(x+2right)left(x-2right)}{left(x-2right)left(x-3right)}=frac{2left(x-2right)left(x-3right)}{left(x-2right)left(x-3right)}

(x + 3)(x – 3) + (x + 2)(x – 2) = 2(x – 2)(x – 3)

x2 – 9 + x2 – 4 = 2x2 – 10x + 12

10x = 25

x = 2,5 (thỏa mãn điều kiện)

Vậy phương trình đã cho có nghiệm là x = 2,5.

d) Điều kiện xác định: x ≠ 2 và x ≠ – 2.

Ta có: frac{x+2}{x-2}-frac{x-2}{x+2}=frac{16}{x^2-4}

frac{left(x+2right)^2}{left(x-2right)left(x+2right)}-frac{left(x-2right)^2}{left(x-2right)left(x+2right)}=frac{16}{left(x-2right)left(x+2right)}

(x + 2)2 – (x – 2)2 = 16

(x + 2 + x – 2)(x + 2 – x + 2) = 16

2x . 4 = 16

x = 2 (không thỏa mãn điều kiện)

Vậy phương trình đã cho vô nghiệm.

Bài 4

Một người đi xe đạp từ A đến B cách nhau 60km. Sau 1 giờ 40 phút, trên cùng quãng đường đó, một xe máy cũng đi từ A đến B và đến B sớm hơn xe đạp 1 giờ. Tính tốc độ của mỗi xe, biết rằng tốc độ của xe máy gấp 3 lần tốc độ của xe đạp.

Lời giải:

Đổi 1 giờ 40 phút = frac{5}{3} giờ

Gọi tốc độ của xe đạp là x (km/h) (x > 0)

Tốc độ của xe máy là 3x (km/h).

Thời gian xe đạp đi từ A đến B là: frac{60}{x} (giờ)

Thời gian xe máy đi từ A đến B là: frac{60}{3x} (giờ)

Tham khảo thêm:   Những địa điểm loot đồ tốt nhất thường bị bỏ qua trong Rules Of Survival

Do xe máy xuất phát sau xe đạp frac{5}{3} giờ và đến B sớm hơn xe đạp 1 giờ nên ta có phương trình:

frac{60}{x}-frac{5}{3}-1=frac{60}{3x}

frac{60}{x}-frac{8}{3}=frac{60}{3x}

frac{180}{3x}-frac{8x}{3x}=frac{60}{3x}

180 – 8x = 60

8x = 120

x = 15 (thỏa mãn điều kiện)

Vậy tốc độ của xe đạp là 15 km/h và tốc độ của xe máy là 45 km/h.

Bài 5

Một xí nghiệp dự định chia đều 12 600 000 đồng để thưởng cho các công nhân tham gia hội thao nhân ngày thành lập xí nghiệp. Khi đến ngày hội thao chỉ có 80% số công nhân tham gia, vì thế mỗi người tham gia hội thao được nhận thêm 105 000 đồng. Tính số công nhân dự định tham gia lúc đầu.

Lời giải:

Gọi số công nhân dự định tham gia lúc đầu là x (người) (x > 0)

Số công nhân tham gia thực tế là: 0,8x (người)

Theo dự định, mỗi công nhân được nhận số tiền là: frac{12 600 000}{x} (đồng)

Thực tế, mỗi công nhân được nhận số tiền là: frac{12 600 000}{0,8x} (đồng)

Do thực tế, mỗi người tham gia được nhận thêm 105 000 đồng nên ta có phương trình:

frac{12 600 000}{x}=frac{12 600 000}{0,8x}-105 000

frac{12 600 000.0,8}{0,8x}=frac{12 600 000}{0,8x}-frac{105 000.0,8x}{0,8x}

10 080 000 = 12 600 000 – 84 000x

84 000x = 2 520 000

x = 30 (thỏa mãn điều kiện)

Vậy số công nhân dự định tham gia lúc đầu là 30 công nhân.

Cảm ơn bạn đã theo dõi bài viết Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn Giải Toán 9 Chân trời sáng tạo tập 1 trang 6, 7, 8, 9, 10 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *