Bạn đang xem bài viết ✅ Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn Giải Toán 9 Cánh diều tập 1 trang 5, 6, 7, 8, 9, 10, 11 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn là tài liệu vô cùng hữu ích giúp các em học sinh lớp 9 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 9 Cánh diều tập 1 trang 5, 6, 7, 8, 9, 10, 11.

Giải bài tập Toán 9 Cánh diều tập 1 Bài 1 – Chương I: Phương tình và hệ phương trình bậc nhất được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh học tập. Vậy mời thầy cô và các em theo dõi bài viết dưới đây của Wikihoc.com:

Giải Toán 9 Cánh diều Tập 1 trang 11

Bài 1

Giải các phương trình:

a) (9x – 4)(2x + 5) = 0;

b) (1,3x + 0,26)(0,2x – 4) = 0;

c) 2x(x + 3) – 5(x + 3) = 0;

d) x2 – 4 + (x + 2)(2x – 1) = 0.

Lời giải:

a) Để giải được phương trình (9x – 4)(2x + 5) = 0, ta giải hai phương trình sau:

9x – 4 = 0

9x = 4

x=frac{4}{9};

2x + 5 = 0

2x = –5

x=frac{-5}{2}.

Vậy phương trình đã cho có hai nghiệm là x= frac{4}{9} và x=frac{-5}{2}

b) Để giải được phương trình (1,3x + 0,26)(0,2x – 4) = 0, ta giải hai phương trình sau:

1,3x + 0,26 = 0

1,3x = –0,26

x = –0,2;

0,2x – 4 = 0

0,2x = 4

x = 20.

Vậy phương trình đã cho có hai nghiệm là x = –0,2 và x = 20.

c) 2x(x + 3) – 5(x + 3) = 0

Tham khảo thêm:   Thông tư 25/2018/TT-NHNN Quy định mới về chính sách tín dụng phát triển nông nghiệp, nông thôn

(x + 3)(2x – 5) = 0.

Để giải được phương trình (x + 3)(2x – 5) = 0, ta giải hai phương trình sau:

x + 3 = 0

x = –3;

2x – 5 = 0

2x = 5

x=frac{5}{2}

Vậy phương trình đã cho có hai nghiệm là x = –3 và x=frac{5}{2}

d) x2 – 4 + (x + 2)(2x – 1) = 0

(x – 2)(x + 2) + (x + 2)(2x – 1) = 0

(x + 2)(x – 2 + 2x – 1) = 0

(x + 2)(3x – 3) = 0.

Để giải được phương trình (x + 2)(3x – 3) = 0, ta giải hai phương trình sau:

x + 2 = 0

x = –2;

3x – 3 = 0

3x = 3

x = 1.

Vậy phương trình đã cho có hai nghiệm là x = –2 và x = 1.

Bài 2

Giải các phương trình:

a) frac{1}{x}=frac{5}{3left(x+2right)}

b) frac{x}{2x-1}=frac{x-2}{2x+5}

c) frac{5x}{x-2}=7+frac{10}{x-2}

d) frac{x^2-6}{x}=x+frac{3}{2}

Lời giải:

a) Điều kiện xác định của phương trình: x ≠ 0 và x ≠ – 2.

frac{1}{x}=frac{5}{3left(x+2right)}

frac{3left(x+2right)}{3xleft(x+2right)}=frac{5x}{3xleft(x+2right)}

3(x + 2) = 5x

3x + 6 = 5x

2x = 6

x = 3

Ta thấy x = 3 thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm là x = 3.

b) Điều kiện xác định của phương trình: x ≠ frac{1}{2} và x ≠ -frac{5}{2}.

frac{x}{2x-1}=frac{x-2}{2x+5}

frac{xleft(2x+5right)}{left(2x-1right)left(2x+5right)}=frac{left(x-2right)left(2x-1right)}{left(2x-1right)left(2x+5right)}

x(2x + 5) = (x – 2)(2x – 1)

2x2 + 5x = 2x2 + 10x – 2x – 5

3x = 5

x=frac{5}{3}

Ta thấy x=frac{5}{3} thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm là x=frac{5}{3}.

c) Điều kiện xác định của phương trình: x ≠ 2.

frac{5x}{x-2}=7+frac{10}{x-2}

frac{5x}{x-2}=frac{7left(x-2right)}{x-2}+frac{10}{x-2}

5x = 7x – 14 + 10

2x = 4

x = 2

Ta thấy x = 2 thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có hai nghiệm là x = 2.

d) Điều kiện xác định của phương trình: x ≠ 0.

frac{x^2-6}{x}=x+frac{3}{2}

frac{2left(x^2-6right)}{2x}=frac{2x^2}{2x}+frac{3x}{2x}

2(x2 – 6) = 2x2 + 3x

2x2 – 12 = 2x2 + 3x

3x = – 12

x = – 4

Ta thấy x = – 4 thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có hai nghiệm là x = – 4.

Bài 3

Một ca nô đi xuôi dòng từ địa điểm A đến địa điểm B, rồi lại đi ngược dòng từ địa điểm B trở về địa điểm A. Thời gian cả đi và về là 3 giờ. Tính tốc độ của dòng nước. Biết tốc độ của ca nô khi nước yên lặng là 27km/h và độ dài quãng đường AB là 40km.

Tham khảo thêm:   Nghị định 18/2021/NĐ-CP Hướng dẫn thuế xuất khẩu, thuế nhập khẩu

Lời giải:

Gọi tốc độ của dòng nước là: x (km/h, 0 < x < 27)

Vận tốc cano khi xuôi dòng là:27 + x (km/h);

Vận tốc cano khi ngược dòng là: 27 - x (km/h);

Thời gian cano khi xuôi dòng là: frac{{40}}{{27 + x}} (giờ);

Thời gian cano khi ngược dòng là: frac{{40}}{{27 - x}} (giờ).

Do thời gian cả đi và về là 3 giờ nên ta có phương trình:

frac{{40}}{{27 + x}} + frac{{40}}{{27 - x}} = 3

frac{{40left( {27 - x} right)}}{{left( {27 + x} right)left( {27 - x} right)}} + frac{{40left( {27 + x} right)}}{{left( {27 + x} right)left( {27 - x} right)}} = frac{{3left( {27 + x} right)left( {27 - x} right)}}{{left( {27 + x} right)left( {27 - x} right)}}

1080 - 40x + 1080 + 40x = 3left( {729 - {x^2}} right)

2160 = 2187 - 3{x^2}

3{x^2} - 27 = 0

3{x^2} = 27

{x^2} = 9

x = 3 (Thỏa mãn điều kiện).

Vậy tốc độ của dòng nước là 3 (km/h).

Bài 4

Một doanh nghiệp sử dụng than để sản xuất sản phẩm. Doanh nghiệp đó lập kế hoạch tài chính cho việc loại bỏ chất ô nhiễm khí thải theo dự kiến sau: Để loại bỏ p% chất ô nhiễm trong khí thải thì chi phí C (Triệu đồng) được tính theo công thức: C = frac{{80}}{{100 - p}} với 0 le p < 100. Với chi phí là 420 triệu đồng thì doanh nghiệp loại bỏ được bao nhiêu phần trăm chất gây ô nhiễm trong khí thải (làm tròn kết quả đến hàng phần mười)?

Lời giải:

Với chi phí là 420 triệu đồng ta có: 420 = frac{{80}}{{100 - p}}

4200 - 420p = 80

420p = 4120

p approx 9,8.

Vậy với chi phí là 420 triệu đồng thì doanh nghiệp loại bỏ được 9,8% chất gây ô nhiễm trong khí thải.

Bài 5

Bạn Hoa dự định dùng hết số tiền 600 nghìn đồng để mua một số chiếc áo đồng giá tặng các bạn có hoàn cảnh khó khăn. Khi đến cửa hàng, loại áo mà bạn Hoa dự định mua được giảm giá 30 nghìn đồng/chiếc. Do vậy, bạn Hoa đã mua được số lượng áo gấp 1,25 lần so với số lượng dự định. Tính giá tiền của mỗi chiếc áo bạn Hoa đã mua.

Lời giải:

Gọi giá tiền của mỗi chiếc áo bạn Hoa đã mua là x (nghìn đồng, 0 < x < 600).

Giá tiền của mỗi chiếc áo bạn Hoa dự định mua là: x - 30 (nghìn đồng)

Số lượng áo bạn Hoa đã mua là: frac{{600}}{x} (chiếc)

Số lượng áo bạn Hoa dự định mua là: frac{{600}}{{x - 30}} (chiếc)

Tham khảo thêm:   Tổng hợp code Mã Tiến Hóa X và cách nhập

Do bạn Hoa đã mua được số lượng áo gấp 1,25 lần so với số lượng dự định nên ta có phương trình:

1,25.frac{{600}}{x} = frac{{600}}{{x - 30}}

frac{{750left( {x - 30} right)}}{{xleft( {x - 30} right)}} = frac{{600x}}{{xleft( {x - 30} right)}}

750x - 22500 = 600x

750x - 600x = 22500

150x = 22500

x = 150(Thoả mãn điều kiện).

Vậy giá tiền mỗi chiếc áo bạn Hoa đã mua là 150 nghìn đồng.

Bài 6

Một mảnh đất có dạng hình chữ nhật với chu vi bằng 52 m. Trên mảnh đất đó, người ta làm một vườn rau có dạng hình chữ nhật với diện tích là 112 m2 và một lối đi xung quanh vườn rộng 1 m (Hình 2). Tính các kích thước của mảnh đất đó.

Bài 6

Lời giải:

Nửa chu vi của mảng đất hình chữ nhật là 52 : 2 = 26 (m).

Gọi chiều rộng của mảnh đất hình chữ nhật là x (m) (x < 13).

Khi đó, chiều dài của mảnh đất hình chữ nhật là 26 – x (m).

Chiều rộng của vườn rau là x – 1 – 1 = x – 2 (m).

Chiều dài của vườn rau là 26 – x – 1 – 1 = 24 – x (m).

Diện tích của vườn rau là (x – 2)(24 – x) (m2).

Theo bài, vườn rau có dạng hình chữ nhật với diện tích là 112 m2 nên ta có phương trình: (x – 2)(24 – x) = 112.

Giải phương trình:

(x – 2)(24 – x) = 112

24x – x2 – 48 + 2x – 112 = 0

– x2 + 26x – 160 = 0

x2 – 26x + 160 = 0

x2 – 10x – 16x + 160 = 0

(x2 – 10x) – (16x – 160) = 0

x(x – 10) – 16(x – 10) = 0

(x – 10)(x – 16) = 0

x – 10 = 0 hoặc x – 16 = 0

x = 10 hoặc x = 16.

Do x < 13 nên x = 10.

Vậy mảnh đất có chiều rộng là 10 m và chiều dài là 26 – 10 = 16 m.

Cảm ơn bạn đã theo dõi bài viết Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn Giải Toán 9 Cánh diều tập 1 trang 5, 6, 7, 8, 9, 10, 11 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *