Bạn đang xem bài viết ✅ Toán 7 Luyện tập chung trang 85 Giải Toán lớp 7 trang 85, 86 sách Kết nối tri thức với cuộc sống – Tập 1 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán lớp 7 Luyện tập chungbao gồm đáp án chi tiết cho từng phần, từng bài tập trong SGK Toán 7 Tập 1 Kết nối tri thức với cuộc sống trang 85, 86.

Lời giải Toán 7 Kết nối tri thức trình bày khoa học, biên soạn dễ hiểu, giúp các em nâng cao kỹ năng giải Toán 7, từ đó học tốt môn Toán lớp 7 hơn. Đồng thời, cũng giúp thầy cô nhanh chóng soạn giáo án Luyện tập chung Chương IV – Tam giác bằng nhau. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Wikihoc.com:

Giải Toán 7 Kết nối tri thức với cuộc sống trang 86 tập 1

Bài 4.29

Cho Hình 4.73. Hãy tính các độ dài a, b và số đo x, y của các góc trên hình vẽ.

Hình 4.73

Hướng dẫn giải:

– Trường hợp 1: cạnh – cạnh – cạnh: Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

Tham khảo thêm:   Đáp án tự luận tập huấn Khoa học tự nhiên 6 sách Chân trời sáng tạo Đáp án 18 câu tự luận tập huấn Khoa học tự nhiên lớp 6

– Trường hợp 2: cạnh – góc – cạnh: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

– Trường hợp 3: góc – cạnh – góc: Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Gợi ý đáp án:

Xét tam giác ABC có:

begin{array}{l}widehat {BAC} + widehat {ABC} + widehat C = {180^o}\ Rightarrow {45^o} + y + {75^o} = {180^o}\ Rightarrow y = {60^o}end{array}

Xét tam giác ABD có:

begin{array}{l}widehat {DAB} + widehat {DBA} + widehat D = {180^o}\ Rightarrow x + {60^o} + {75^o} = {180^o}\ Rightarrow x = {45^o}end{array}

Xét 2 tam giác ABC và ADB có:

widehat {DAB} = widehat {CAB} = {45^o}

AB chung

widehat D = widehat C = {75^o}

=>Delta ABC = Delta ADB(g.c.g)

=>BC=BD (2 cạnh tương ứng), mà BD = 3,3 cm =>a= BC= 3,3cm

AC=AD (2 cạnh tương ứng), mà AC = 4 cm =>b = AD = 4cm

Bài 4.30

Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM =ON, OA > OM.

Chứng minh rằng:

a) Delta OAN = Delta OBM;

b) Delta AMN = Delta BNM.

Hướng dẫn giải:

– Trường hợp 1: cạnh – cạnh – cạnh: Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

– Trường hợp 2: cạnh – góc – cạnh: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

– Trường hợp 3: góc – cạnh – góc: Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Tham khảo thêm:   Thủ tục nghỉ hưu đối với công chức, viên chức Theo Nghị định số 143/2007/NĐ-CP quy định về thủ tục thực hiện nghỉ hưu đối với cán bộ, công chức đủ điều kiện nghỉ hưu

Gợi ý đáp án:

Bài 4.30

a) Xét tam giác OAN và OBM có:

OA=OB

widehat{O} chung

OM=ON

=>Delta OAN = Delta OBM(c.g.c)

b) Do Delta OAN = Delta OBM nên AN=BM (2 cạnh tương ứng); widehat {OAN} = widehat {OBM}(2 góc tương ứng) =>widehat {NAM} = widehat {MBN}

Do OA + AM = OM; OB + BN = ON

Mà OA = OB, OM =ON

=> AM=BN

Xét hai tam giác AMN và BNM có:

AN=BM

widehat {NAM} = widehat {MBN}

AM=BN

=>Delta AMN = Delta BNM(c.g.c)

Bài 4.31

Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng:

a) AC = BD;

b) Delta ACD =  Delta BDC.

Hình 4.74

Hướng dẫn giải:

– Trường hợp 1: cạnh – cạnh – cạnh: Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

– Trường hợp 2: cạnh – góc – cạnh: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

– Trường hợp 3: góc – cạnh – góc: Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Gợi ý đáp án:

a) Ta có: OA = OB, OC = OD nên AD=BC

Do OC=OD nên tam giác OCD cân => widehat {OCD} = widehat {ODC}

Xét 2 tam giác ACD và BDC có:

AD=BC

widehat {OCD} = widehat {ODC}

CD chung

=>Delta ACD = Delta BCD(c.g.c)

=>AC=BD (hai cạnh tương ứng)

b) Xét hai tam giác ACD và BDC có:

AO=BO

CO=DO

AC=BD

=>Delta ACD = Delta BDC(c.c.c)

Bài 4.32

Cho tam giác MBC vuông tại M có widehat B = 60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.

Tham khảo thêm:   Văn mẫu lớp 8: Phân tích hình tượng con hổ trong bài thơ Nhớ rừng (Dàn ý + 6 mẫu) Bài thơ Nhớ rừng của Thế Lữ

Hướng dẫn giải:

– Tam giác đều là tam giác có ba cạnh bằng nhau và ba góc bằng nhau (cùng bằng 600)

– Tam giác cân có một góc bằng 600 là tam giác đều.

– Điểm nằm trên đường trung trực của đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng đó

Gợi ý đáp án:

Xét 2 tam giác vuông CMB và CMA có:

MC chung

MB=MA

=>Delta CMB = Delta CMA(c.g.c)

=>CA = CB (2 cạnh tương ứng).

=> Tam giác ABC cân tại C.

Mà góc B bằng 60o

=>Tam giác ABC đều.

Cảm ơn bạn đã theo dõi bài viết Toán 7 Luyện tập chung trang 85 Giải Toán lớp 7 trang 85, 86 sách Kết nối tri thức với cuộc sống – Tập 1 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *