Bạn đang xem bài viết ✅ Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc Giải Toán lớp 7 trang 91, 92 – Tập 2 sách Cánh diều ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc Cánh diều là tài liệu vô cùng hữu ích giúp các em học sinh lớp 7 có thêm nhiều gợi ý tham khảo để giải các bài tập từ 1→6 trang 88, 89, 90, 91, 92 tập 2.

Giải bài tập Toán 7 Cánh diều tập 2 trang 88, 89, 90, 91, 92 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài, đồng thời là tư liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh học tập. Vậy sau đây là nội dung chi tiết Giải Toán 7 Bài 6 trang 88, 89, 90, 91, 92 Cánh diều, mời các bạn cùng theo dõi.

Giải Toán 7 trang 91, 92 Cánh diều – Tập 2

Bài 1

Cho hai tam giác ABC và A’B’C’ thỏa mãn: AB = A’B’, hat{A} = hat{A^{'} } , hat{C} = hat{C^{'} } Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?

Gợi ý đáp án

Tham khảo thêm:   Tiêu chuẩn công nhận trường Mầm non đạt chuẩn Quốc gia Tiêu chí đánh giá trường Mầm non đạt chuẩn Quốc gia mới nhất

Xét tam giác ABC: hat{B} = 180^{circ} - hat{A} - hat{C}

Xét tam giác A’B’C’: hat{B^{'} } = 180^{circ} - hat{A^{'} } - hat{C^{'} }

hat{A} = hat{A^{'} } , hat{C} = hat{C^{'} } nên hat{B} = hat{B^{'} }

Xét ∆ABC và ∆A’B’C’ có:

hat{A} = hat{A^{'} } (theo giả thiết).

AB = A’B’ (theo giả thiết).

hat{B} = hat{B^{'} } (theo giả thiết).

Do đó ∆ABC = ∆A’B’C’ (g – c – g).

Bài 2

Cho Hình 65 có AM = BN, hat{A} = hat{B}

Chứng minh: OA = OB, OM = ON.

Gợi ý đáp án

Xét ∆AOM có: hat{OMA} = 180^{circ} - hat{OAM} - hat{AOM}

Xét ∆BON có: hat{ONB} = 180^{circ} - hat{OBN} - hat{BON}

hat{OAM} = hat{OBN} (theo giả thiết), hat{AOM} = hat{BON} (2 góc đối đỉnh).

Do đó hat{OAM} = hat{ONB}

Xét ∆AOM và ∆BON có:

hat{OAM} = hat{OBN} (theo giả thiết)

AM = BN (theo giả thiết).

hat{OAM} = hat{ONB} (chứng minh trên).

Suy ra ∆AOM = ∆BON (g – c – g).

Do đó OA = OB (2 cạnh tương ứng), OM = ON (2 cạnh tương ứng).

Bài 3

Cho Hình 66 có hat{N} = hat{P} = 90^{circ} , hat{PMQ} = hat{NQM}. Chứng minh MN = QP, MP = QN.

Gợi ý đáp án

Tam giác MNQ có hat{N} = 90^{circ} nên tam giác MNQ vuông tại N.

Tam giác QPM có hat{P} = 90^{circ} nên tam giác QPM vuông tại P.

Xét ∆MNQ vuông tại N và ∆QPM vuông tại P có:

hat{NQM} = hat{PMQ} (theo giả thiết).

MQ chung.

Suy ra ∆MNQ = ∆QPM (cạnh huyền – góc nhọn).

Do đó MN = QP (2 cạnh tương ứng), MP = QN (2 cạnh tương ứng).

Bài 4

Cho Hình 67 có hat{AHD} = hat{BKC} = 90^{circ}, DH = CK, hat{DAB} = hat{CBA}.

Chứng minh AD = BC.

Gợi ý đáp án

Ta thấy hat{DAB} là góc ngoài tại đỉnh A của tam giác AHD nên hat{DAB} = hat{AHD} + hat{ADH} hay

hat{DAB} = 90^{circ}  + hat{ADH}

hat{CBA} là góc ngoài tại đỉnh B của tam giác BKC nên hat{CBA} = hat{BKC} + hat{BCK} hay

hat{CBA} = 90^{circ}  + hat{BCK}

hat{DAB} = hat{CBA} nên hat{ADH} = hat{BCK}

Xét ∆AHD vuông tại H và ∆BKC vuông tại K có: hat{ADH} = hat{BCK} (chứng minh trên).

DH = CK (theo giả thiết).

Suy ra ∆AHD = ∆BKC (góc nhọn – cạnh góc vuông).

Do đó AD = BC (2 cạnh tương ứng).

Tham khảo thêm:   Thông tư 29/2014/TT-BYT Quy định biểu mẫu và chế độ báo cáo thống kê y tế áp dụng đối với cơ sở khám, chữa bệnh tư nhân

Bài 5

Cho tam giác ABC có hat{B} > hat{C}. Tia phân giác góc BAC cắt cạnh BC tại điểm D.

a) Chứng minh hat{ADB} < hat{ADC}

b) Kẻ tia Dx nằm trong góc ADC sao cho hat{ADx} = hat{ADB}. Giả sử tia Dx cắt cạnh AC tại điểm E. Chứng minh: ∆ABD = ∆AED, AB < AC.

Gợi ý đáp án

a) hat{ADB} là góc ngoài tại đỉnh D của tam giác ADC nên hat{ADB} = hat{DAC} + hat{ACD}

hat{ADC} là góc ngoài tại đỉnh D của tam giác ADB nên hat{ADC} = hat{DAB} + hat{ABD}

Do AD là tia phân giác của hat{BAC} nên hat{DAB} = hat{DAC}

hat{ABD} > hat{ACD} nên hat{DAC} + hat{ACD} < hat{DAB} + hat{ABD}

hat{ADB} < hat{ADC}

b) Xét ∆ABD và ∆AED có:

hat{DAB} = hat{DAE}(chứng minh trên).

AD chung.

hat{ADB} = hat{ADE} (theo giả thiết).

Suy ra ∆ABD = ∆AED (g – c – g).

Do đó AB = AE.

Mà AE < AC nên AB < AC.

Vậy ∆ABD = ∆AED và AB < AC.

Bài 6

Cho ∆ABC = ∆MNP. Tia phân giác của góc BAC và N MP lần lượt cắt các cạnh BC và NP tại D, Q. Chứng minh AD = MQ.

Gợi ý đáp án

Do ∆ABC = ∆MNP nên hat{BAC} = hat{NMP} (2 góc tương ứng), hat{ACB} = hat{MPN} (2 góc tương ứng) và AC = MP (2 cạnh tương ứng).

Do AD là tia phân giác của hat{BAC} nên hat{DAC} = frac{1}{2} hat{BAC}

Do MQ là tia phân giác của hat{NMP} nên hat{QMP} = frac{1}{2} hat{NMP}

hat{BAC} = hat{NMP} nên hat{DAC} = hat{QMP}

Xét ∆ADC và ∆MQP có:

hat{DAC} = hat{QMP} (chứng minh trên).

AC = MP (chứng minh trên).

hat{ACD} = hat{MPQ} (chứng minh trên).

Suy ra ∆ADC = ∆MQP (g – c – g).

Do đó AD = MQ (2 cạnh tương ứng).

Cảm ơn bạn đã theo dõi bài viết Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc Giải Toán lớp 7 trang 91, 92 – Tập 2 sách Cánh diều của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

Tham khảo thêm:   Đoạn văn tiếng Anh viết về sở thích đi cắm trại Viết về sở thích bằng tiếng Anh

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *