Bạn đang xem bài viết ✅ Toán 7 Bài 6: Dãy tỉ số bằng nhau Giải Toán lớp 7 trang 58 – Tập 1 sách Cánh diều ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán lớp 7 trang 58 tập 1 Cánh diều giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời câu hỏi hoạt động và 7 bài tập cuối bài trong SGK bài 6 Dãy tỉ số bằng nhau.

Toán 7 Cánh diều tập 1 trang 58 được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán lớp 7 tập 1. Giải Toán 7 Dãy tỉ số bằng nhau là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.

Giải Toán 7 Bài 6: Dãy tỉ số bằng nhau

  • Hoạt động Toán 7 Bài 6 Cánh diều
  • Giải Toán 7 trang 58 Cánh diều – Tập 1

Hoạt động Toán 7 Bài 6 Cánh diều

Hoạt động 1

So sánh các cặp tỉ số trong ba tỉ số sau:

frac{4}{6};frac{8}{{12}};frac{{ - 10}}{{ - 15}}

Gợi ý đáp án 

Ta có:

frac{4}{6} = frac{{4:2}}{{6:2}} = frac{2}{3}

frac{8}{{12}} = frac{{8:4}}{{12:4}} = frac{2}{3}

frac{{ - 10}}{{ - 15}} = frac{{left( { - 10} right):left( { - 5} right)}}{{left( { - 15} right):left( { - 5} right)}} = frac{2}{3}

Rightarrow frac{4}{6} = frac{8}{{12}} = frac{{ - 10}}{{ - 15}}

Hoạt động 2

a) Cho tỉ lệ thức frac{6}{{10}} = frac{9}{{15}}

So sánh hai tỉ số frac{{6 + 9}}{{10 + 15}}frac{{6 - 9}}{{10 - 15}} với các tỉ số trong tỉ lệ thức đã cho.

b) Cho tỉ lệ thức frac{a}{b} = frac{c}{d} với b + d ≠ 0, b – d ≠ 0.

Tham khảo thêm:   Bài giảng điện tử lớp 3 năm 2023 - 2024 (Sách mới) Giáo án PowerPoint lớp 3 các môn (Cả năm)

Gọi giá trị chung của các tỉ số đó là k, tức là frac{a}{b} = frac{c}{d} = k

– Tính a và b theo k, tính c theo d và k.

– Tính tỉ số frac{{a + c}}{{b + d}}frac{{a - c}}{{b - d}} theo k

– So sánh mỗi tỉ số frac{{a + c}}{{b + d}}frac{{a - c}}{{b - d}} với các tỉ số frac{a}{b}frac{c}{d}

Gợi ý đáp án 

a) Ta có: frac{6}{{10}} = frac{9}{{15}} = frac{3}{5}

frac{{6 + 9}}{{10 + 15}} = frac{{15}}{{25}} = frac{3}{5}

frac{{6 - 9}}{{10 - 15}} = frac{{ - 3}}{{ - 5}} = frac{3}{5}

=> frac{6}{{10}} = frac{9}{{15}} = frac{{6 + 9}}{{10 + 15}} = frac{{6 - 9}}{{10 - 15}}

b) Ta có: frac{a}{b} = frac{c}{d} = k

=> frac{a}{b} = k => a = b . k

=> frac{c}{d} = k => c = d . k

frac{{a + c}}{{b + d}} = frac{{b.k + d.k}}{{b + d}} = frac{{kleft( {b + d} right)}}{{b + d}} = k

frac{{a - c}}{{b - d}} = frac{{b.k - d.k}}{{b - d}} = frac{{kleft( {b - d} right)}}{{b - d}} = k

=> frac{{a + c}}{{b + d}} = frac{{a - c}}{{b - d}} = frac{a}{b} = frac{c}{d} = k

Giải Toán 7 trang 58 Cánh diều – Tập 1

Bài 1

Cho tỉ lệ thức frac{x}{7} = frac{y}{2}. Tìm hai số x,y biết:

a) x + y = 18;

b) x – y = 20

Gợi ý đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a) frac{x}{7} = frac{y}{2} = frac{{x + y}}{{7 + 2}} = frac{{18}}{9} = 2

Vậy x = 7 . 2 = 14; y = 2.2 = 4

b) frac{x}{7} = frac{y}{2} = frac{{x - y}}{{7 - 2}} = frac{{20}}{5} = 4

Vậy x = 7.4 = 28; y = 2.4 = 8

Bài 2

Cho dãy tỉ số bằng nhau frac{x}{3} = frac{y}{4} = frac{z}{5}. Tìm ba số x,y,z biết:

a) x+y+z = 180; b) x + y – z = 8

Gợi ý đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a) frac{x}{3} = frac{y}{4} = frac{z}{5} = frac{{x + y + z}}{{3 + 4 + 5}} = frac{{180}}{{12}} = 15

Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75

b) frac{x}{3} = frac{y}{4} = frac{z}{5} = frac{{x + y - z}}{{3 + 4 - 5}} = frac{8}{2} = 4

Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20

Bài 3

Cho ba số x,y,z sao cho frac{x}{3} = frac{y}{4};frac{y}{5} = frac{z}{6}

a) Chứng minh:frac{x}{{15}} = frac{y}{{20}} = frac{z}{{24}}

b) Tìm ba số x, y, z biết x – y + z = – 76

Gợi ý đáp án

a) Ta có:

begin{array}{l}frac{x}{3} = frac{y}{4} Rightarrow frac{x}{3}.frac{1}{5} = frac{y}{4}.frac{1}{5} Rightarrow frac{x}{{15}} = frac{y}{{20}};\frac{y}{5} = frac{z}{6} Rightarrow frac{y}{5}.frac{1}{4} = frac{z}{6}.frac{1}{4} Rightarrow frac{y}{{20}} = frac{z}{{24}}end{array}

Vậy frac{x}{{15}} = frac{y}{{20}} = frac{z}{{24}} (đpcm)

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

frac{x}{{15}} = frac{y}{{20}} = frac{z}{{24}} = frac{{x - y + z}}{{15 - 20 + 24}} = frac{{ - 76}}{{19}} = - 4

Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96

Bài 4

Lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng tỉ lệ với hai số 11 và 8. Tính lượng khí carbon đioxide và lượng oxygen mà 1 m2 lá cây đã thu vào và thải ra môi trường khi quang hợp trong 11 giờ ở ngoài trời nắng, biết lượng khí carbon đioxide lá cây thu vào nhiều hơn lượng oxygen lá cây thải ra môi trường là 8 g.

Tham khảo thêm:   Đáp án trắc nghiệm tập huấn môn Đạo đức 4 sách Cánh diều Tập huấn sách giáo khoa lớp 4 Cánh diều năm 2023 - 2024

Áp dụng tính chất của dãy tỉ số bằng nhau

Gợi ý đáp án

Gọi lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng lần lượt là x,y (g) (x,y > 0)

Vì lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng tỉ lệ với 11 và 8 nên frac{x}{{11}} = frac{y}{8}

Mà khí carbon đioxide lá cây thu vào nhiều hơn lượng oxygen lá cây thải ra môi trường trong 11 giờ là 8 g nên x – y = 8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

begin{array}{l}frac{x}{{11}} = frac{y}{8} = frac{{x - y}}{{11 - 8}} = frac{8}{3}\ Rightarrow x = 11.frac{8}{3} = frac{{88}}{3}\y = 8.frac{8}{3} = frac{{64}}{3}end{array}

Vậy lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng lần lượt là frac{{88}}{3}g;frac{{64}}{3}g

Bài 5

Một mảnh vườn có dạng hình chữ nhật với tỉ số giữa độ dài hai cạnh của nó bằng frac{3}{5} và chu vi bằng 48 m . Tính diện tích của mảnh vườn đó.

Gợi ý đáp án

Gọi độ dài 2 cạnh hình chữ nhật là x ,y (m) (x, y > 0)

Vì tỉ số giữa độ dài hai cạnh của nó bằng frac{3}{5} nên frac{x}{y} = frac{3}{5} Rightarrow frac{x}{3} = frac{y}{5}

Vì chu vi của mảnh đất là 48 m nên 2.(x+y) = 48 nên x + y = 48:2= 24

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

begin{array}{l}frac{x}{3} = frac{y}{5} = frac{{x + y}}{{3 + 5}} = frac{{24}}{8} = 3\ Rightarrow x = 3.3 = 9;y = 5.3 = 15end{array}

Vậy diện tích hình chữ nhật là: S = 9.15 = 135 (m2)

Bài 6

Trong đợt quyên góp ủng hộ các bạn vùng lũ lụt, số sách mà ba lớp 7A,7B,7C quyên góp được tỉ lệ với ba số 5;6;8. Tính số sách cả ba lớp đã quyên góp, biết số sách lớp 7C quyên góp nhiều hơn số sách của lớp 7A quyên góp là 24 quyển.

Tham khảo thêm:   Top game kinh điển chiếm trọn tuổi thơ của thế hệ 8X và 9X (phần 1)

Gợi ý đáp án

Gọi số sách 3 lớp 7A,7B,7C quyên góp được là x,y,z (quyển) (x,y,z in mathbb{N}*)

Vì số sách mà ba lớp 7A,7B,7C quyên góp được tỉ lệ với ba số 5;6;8 nên frac{x}{5} = frac{y}{6} = frac{z}{8}

Mà số sách lớp 7C quyên góp nhiều hơn số sách của lớp 7A quyên góp là 24 quyển nên z – x = 24

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

begin{array}{l}frac{x}{5} = frac{y}{6} = frac{z}{8} = frac{{z - x}}{{8 - 5}} = frac{{24}}{3} = 8\ Rightarrow x = 5.8 = 40;y = 6.8 = 48;z = 8.8 = 64end{array}

Vậy số sách 3 lớp 7A,7B,7C quyên góp được lần lượt là 40 quyển; 48 quyển và 64 quyển.

Bài 7

Trên quần đảo Trường Sa của Việt Nam, cây phong ba, cây bàng vuông, cây mù u là những loại cây có sức sống mãnh liệt, chịu đựng được tàn phá của thiên nhiên, biển mặn và có thời gian sinh trưởng lâu. Nhân ngày Tết trồng cây, các chiến sĩ đã trồng tổng cộng 192 cây phong ba, cây bàng vuông, cây mù u trên các đảo. Số cây phong ba, cây bàng vuông, cây mù u đã trồng tỉ lệ với ba số 5;4;3. Tính số cây các chiến sĩ đã trồng mỗi loại.

Gợi ý đáp án

Gọi số cây phong ba, cây bàng vuông, cây mù u đã trồng được là x,y,z (cây) (x,y,z in mathbb{N}*)

Vì tổng số cây đã trồng được là 192 cây nên x + y + z = 192

Mà số cây phong ba, cây bàng vuông, cây mù u đã trồng tỉ lệ với ba số 5;4;3 nên frac{x}{5} = frac{y}{4} = frac{z}{3}

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

begin{array}{l}frac{x}{5} = frac{y}{4} = frac{z}{3} = frac{{x + y + z}}{{5 + 4 + 3}} = frac{{192}}{{12}} = 16\ Rightarrow x = 5.16 = 80;y = 4.16 = 64;z = 3.16 = 48end{array}

Vậy số cây phong ba, cây bàng vuông, cây mù u đã trồng được lần lượt là: 80 cây, 64 cây và 48 cây

Cảm ơn bạn đã theo dõi bài viết Toán 7 Bài 6: Dãy tỉ số bằng nhau Giải Toán lớp 7 trang 58 – Tập 1 sách Cánh diều của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *