Bạn đang xem bài viết ✅ Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Giải Toán 12 Cánh diều trang 15 → 20 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là tài liệu vô cùng hữu ích giúp các em học sinh có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 12 Cánh diều tập 1 trang 15, 16, 17, 18, 19, 20.

Giải bài tập Toán 12 Cánh diều tập 1 Bài 2 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 2 Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số. Mời thầy cô và các em theo dõi bài viết dưới đây của Wikihoc.com:

Giải Toán 12 Cánh diều Tập 1 trang 19, 20

Bài 1

Nếu hàm số y = f(x) có đạo hàm trên ℝ thỏa mãn f'(x) = sinx – 2 023, ∀x ∈ ℝ thì giá trị lớn nhất của hàm số y = f(x) trên đoạn [1; 2] bằng:

Tham khảo thêm:   Thông tư số 219/2010/TT-BTC hướng dẫn tiêu chí xác định tổ chức bảo hiểm có uy tín trong lĩnh vực hàng hải
A. f(0). B. f(1). C. f(1,5). D. f(2).

Đáp án đúng:B

Bài 2

Tìm giá trị lớn nhất của mỗi hàm số sau:

a) f(x) = frac{4}{1+x^{2} }

b) f(x) = x - frac{3}{x} trên nửa khoảng (0; 3].

Hướng dẫn giải:

a) Xét hàm số f(x) = frac{4}{1+x^{2} }. TXĐ: D = ℝ

Ta có: f'left(xright)=-frac{8x}{1+x^2}. Khi đó với mọi x ∈ ℝ, f'(x) = 0 khi x = 0.

Bảng biến thiên của hàm số:

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Vậy trên khoảng (-infty ;+infty ), hàm số đạt giá trị lớn nhất bằng 4 tại x = 0.

b) Xét hàm số f(x) = x - frac{3}{x} trên nửa khoảng (0; 3].

Ta có: f'left(xright)=1+frac{3}{x^2} >0 với mọi x ∈ (0; 3]. Do đó hàm số đồng biến trên khoảng (0; 3].

Vậy underset{(0;3]}{max}= f(3) = 2

Bài 3

Tìm giá trị nhỏ nhất của mỗi hàm số sau:

a) fleft(xright)=x+frac{4}{x} trên khoảng (0; +∞);

b) f(x) = x3 – 12x + 1 trên khoảng (1; +∞).

Hướng dẫn giải:

a) Ta có: f'left(xright)=1-frac{4}{x^2}. Khi đó, trên khoảng (0; +∞), f'(x) = 0 khi x = 2.

Bảng biến thiên của hàm số f(x) như sau:

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Vậy underset{(0;+infty)}{min} f(x) = f(2)=4

b) Xét hàm số f(x) = x3 – 12x + 1 trên khoảng (1; +∞).

Ta có: f'(x) = 3x2 – 12. Khi đó, trên khoảng (1; +∞), f'(x) = 0 khi x = 2.

Bảng biến thiên của hàm số f(x) như sau:

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Vậy underset{(0;+infty)}{min} f(x) = f(2)=4

Bài 4

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau:

a) fleft(xright)=x^3-frac{3}{2}x^2 trên đoạn [– 1; 2];

b) f(x) = x4 – 2x3 + x2 + 1 trên đoạn [– 1; 1];

c) f(x) = ex(x2 – 5x + 7) trên đoạn [0; 3];

d) f(x) = cos2x + 2x + 1 trên đoạn left[-frac{pi}{2};piright]

Hướng dẫn giải:

a)fleft(xright)=x^3-frac{3}{2}x^2 trên đoạn [– 1; 2]

Ta có: f'(x) = 3x2 – 3x. Khi đó trên khoảng (- 1; 2), f'(x) = 0 ⇔ x = 0 hoặc x = 1.

Tham khảo thêm:   Thông tư 11/2017/TT-BCT Quy định mới về đăng ký kinh doanh tạm nhập tái xuất hàng hóa

fleft(-1right)=-frac{5}{2}; fleft(0right)=0; fleft(1right)=-frac{1}{2}; fleft(2right)=2

Vậy underset{[-1;2]}{max} f(x) =2 tại x = 2

underset{[-1;2]}{min} f(x) =-frac52 tại x = – 1

b) f(x) = x4 – 2x3 + x2 + 1 trên đoạn [– 1; 1]

Ta có: f'(x) = 4x3 – 6x2 + 2x. Khi đó trên khoảng (- 1; 1), f'(x) = 0 ⇔ x = 0 hoặc x=frac{1}{2} hoặc x = 1.

f(- 1) = 5; f(0) = 1; fleft(frac{1}{2}right)=frac{17}{16}; f(1) = 1

Vậy underset{[-1;1]}{max} f(x) =5 tại x = – 1

underset{[-1;1]}{min} f(x) =1 tại x = 0 và x = 1.

c) f(x) = ex(x2 – 5x + 7) trên đoạn [0; 3]

Ta có: f'(x) = ex (x2 – 3x + 2). Khi đó trên khoảng (0; 3), f'(x) = 0 ⇔ x = 1 hoặc x = 2.

f(0) = 7; f(1) = 3e; f(2) = e2; f(3) = e3.

Vậy underset{[0;3]}{max} f(x) = e^3 tại x = 3

underset{[0;3]}{min} f(x) = 7 tại x = 0

d) f(x) = cos2x + 2x + 1 trên đoạn left[-frac{pi}{2};piright]

Ta có: f'(x) = – 2sin2x + 2. Khi đó trên khoảng left(-frac{pi}{2};piright), f'(x) = 0 ⇔ x=frac{pi}{4}

fleft(-frac{pi}{2}right)=-2pi; fleft(frac{pi}{4}right)=frac{pi}{2}+1; fleft(piright)=2+2pi

Vậy underset{left[-frac{pi}{2};piright] }{max} f(x) = 2+2pi tại x = π

underset{left[-frac{pi}{2};piright] }{min} f(x) = -2pi tại x=-frac{pi}{2}

Bài 5

Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình

s(t) = – t3 + 6t2 + t + 5,

trong đó t tính bằng giây và s tính bằng mét. Chất điểm có vận tốc tức thời lớn nhất bằng bao nhiêu trong 5 giây đầu tiên đó?

Hướng dẫn giải:

Xét hàm vận tốc: v(t) = s'(t) = – 3t2 + 12t + 1

Ta có: v'(t) = – 6t + 12. Trên khoảng (0; 5), v'(t) = 0 khi t = 2.

v(0) = 1; v(2) = 13; v(5) = – 14

Vậy chất điểm có vận tốc tức thời lớn nhất trong 5 giây đầu tiên là 13 m/s.

Bài 6

Người ta bơm xăng vào bình của một xe ô tô. Biết rằng thể tích V (lít) của lượng xăng trong bình xăng tính theo thời gian bơm xăng t (phút) được cho bởi công thức

V(t) = 300(t2 – t3) + 4 với 0 ≤ t ≤ 0,5.

(Nguồn: R.I Charles et al., Algebra 2, Pearson)

a) Ban đầu trong bình xăng có bao nhiêu lít xăng?

Tham khảo thêm:   Ngân hàng câu hỏi tập huấn Tự nhiên và xã hội lớp 1 sách Cánh diều Đáp án 15 câu trắc nghiệm tập huấn SGK lớp 1 môn TNXH

b) Sau khi bơm 30 giây thì bình xăng đầy. Hỏi dung tích của bình xăng trong xe là bao nhiêu lít?

c) Khi xăng chảy vào bình xăng, gọi V'(t) là tốc độ tăng thể tích tại thời điểm t với 0 ≤ t ≤ 0,5. Xăng chảy vào bình xăng ở thời điểm nào có tốc độ tăng thể tích là lớn nhất.

Bài 7

Ho ép khí quản co lại, ảnh hưởng đến tốc độ của không khí đi vào khí quản. Tốc độ của không khí đi vào khí quản khi ho được cho bởi công thức

V = k(R – r)r2 với 0 ≤ r < R,

trong đó k là hằng số, R là bán kính bình thường của khí quản, r là bán kính khí quản khi ho (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Hỏi bán kính của khí quản khi ho bằng bao nhiêu thì tốc độ của không khí đi vào khí quản là lớn nhất?

Cảm ơn bạn đã theo dõi bài viết Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Giải Toán 12 Cánh diều trang 15 → 20 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *