Bạn đang xem bài viết ✅ Toán 11 Bài 3: Hàm số lượng giác Giải Toán 11 Kết nối tri thức trang 22, 23, 24… 30 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán 11 bài 3: Hàm số lượng giác là tài liệu vô cùng hữu ích giúp các em học sinh lớp 11 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 11 Kết nối tri thức với cuộc sống tập 1 trang 22→30.

Toán 11 Kết nối tri thức tập 1 trang 30 được biên soạn đầy đủ, chi tiết trả lời các câu hỏi từ bài 1.14 đến 1.18 giúp các bạn có thêm nhiều nguồn ôn tập đối chiếu với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết giải Toán 11 tập 1 bài 3 Hàm số lượng giác Kết nối tri thức, mời các bạn cùng theo dõi tại đây.

1. Toán lớp 11 Kết nối tri thức tập 1 trang 30

Bài 1.14 trang 30

Tìm tập xác định của các hàm số sau:

a) y=frac{1-cosx}{sinx}

b) y=sqrt{frac{1+cosx}{2-cosx}}

Gợi ý đáp án

Tham khảo thêm:   Quyết định 5099/QĐ-BGDĐT Ban hành quy chế bổ nhiệm, bổ nhiệm lại, từ chức, miễn nhiệm công chức, viên chức lãnh đạo các đơn vị sự nghiệp trực thuộc Bộ Giáo dục và Đào tạo

a) Biểu thức frac{1-cosx}{sinx} có nghĩa khi sin x ≠ 0, tức là x ≠ kπ, k ∈ ℤ.

Vậy tập xác định của hàm số y=frac{1-cosx}{sinx} là D = ℝ {kπ | k ∈ ℤ}.

b) Biểu thức sqrt{frac{1+cosx}{2-cosx}} có nghĩa khi sqrt{frac{1+cosx}{2-cosx}}≥ 02-cosxneq 0

Vì – 1 ≤ cos x ≤ 1 nên 1 + cos x ≥ 0 với mọi x ∈ ℝ và 2 – cos x ≥ 1 > 0 với mọi x ∈ ℝ.

Do đó, 2 – cos x ≠ 0 với mọi x ∈ ℝ và sqrt{frac{1+cosx}{2-cosx}}≥ 0 với mọi x ∈ ℝ.

Vậy tập xác định của hàm số y=sqrt{frac{1+cosx}{2-cosx}} là D = ℝ.

Bài 1.15 trang 30

Xét tính chẵn lẻ của các hàm số sau:

a) y = sin 2x + tan 2x;

b) y = cos x + sin2x;

c) y = sin x cos 2x;

d) y = sin x + cos x.

Gợi ý đáp án

a) Biểu thức sin 2x + tan 2x có nghĩa khi cos 2x ≠ 0 (do tan2x=frac{sin2x}{cos2x}), tức là 2xneq frac{pi }{2}+kpi ,kin ZLeftrightarrow xneq frac{pi }{4}+kfrac{pi }{2},kin Z

Suy ra tập xác định của hàm số y = f(x) = sin 2x + tan 2x là D = R {frac{pi }{4}+kfrac{pi }{2}|kin Z}

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = sin (– 2x) + tan (– 2x) = – sin 2x – tan 2x = – (sin 2x + tan 2x) = – f(x), ∀ x ∈ D.

Vậy y = sin 2x + tan 2x là hàm số lẻ.

b) Tập xác định của hàm số y = f(x) = cos x + sin2x là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = cos (– x) + sin^{2} (– x) = cos x + (– sin x)^{2} = cos x + sin^{2} x = f(x), ∀ x ∈ D.

Vậy y = cos x + sin2x là hàm số chẵn.

c) Tập xác định của hàm số y = f(x) = sin x cos 2x là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Tham khảo thêm:   Lịch chiếu phim Thanh Xuân Chi Thành

Ta có: f(– x) = sin (– x) cos (– 2x) = – sin x cos 2x = – f(x), ∀ x ∈ D.

Vậy y = sin x cos 2x là hàm số lẻ.

d) Tập xác định của hàm số y = f(x) = sin x + cos x là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = sin (– x) + cos (– x) = – sin x + cos x ≠ – f(x).

Vậy y = sin x + cos x là hàm số không chẵn, không lẻ.

Bài 1.16 trang 30

Tìm tập giá trị của các hàm số sau:

a) y=2sin(x-frac{pi }{4})-1

b) y=sqrt{1+cosx}-2

Gợi ý đáp án

a) Ta có: -1leq sin(x-frac{pi }{4})leq 1 với mọi xin R

Leftrightarrow -2leq 2sin(x-frac{pi }{4})leq 2 với mọi xin R

Leftrightarrow -2-1leq 2sin(x-frac{pi }{4})-1leq 2-1 với mọi xin R

Leftrightarrow -3leq 2sin(x-frac{pi }{4})-1leq 1 với mọi xin R

Leftrightarrow -3leq yleq 1 với mọi xin R

Vậy tập giá trị của hàm số y=2sin(x-frac{pi }{4})-1 là [– 3; 1].

b) Vì – 1 ≤ cos x ≤ 1 với mọi x ∈ ℝ nên 0 ≤ 1 + cos x ≤ 2 với mọi x ∈ ℝ.

Do đó, 0leq sqrt{1+cosx}leq sqrt{2} với mọi x ∈ ℝ.

Suy ra -2leq sqrt{1+cosx}-2leq sqrt{2}-2 với mọi x ∈ ℝ.

Hay -2leq yleq sqrt{2}-2 với mọi x ∈ ℝ.

Vậy tập giá trị của hàm số y=sqrt{1+cosx}-2[-2;sqrt{2}-2]

Bài 1.17 trang 30

Từ đồ thị của hàm số y = tan x, hãy tìm các giá trị x sao cho tan x = 0.

Gợi ý đáp án

Ta có đồ thị của hàm số y = tan x như hình vẽ dưới đây.

Ta có tan x = 0 khi hàm số y = tan x nhận giá trị bằng 0 ứng với các điểm x mà đồ thị giao với trục hoành. Từ đồ thị ở hình trên ta suy ra y = 0 hay tan x = 0 khi x = kπ, k ∈ ℤ.

Bài 1.18 trang 30

Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = 90cos(frac{pi }{10}t), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.

Tham khảo thêm:   Chưa được phân loại số 237/2009/TT-BTC Hướng dẫn xử lý thuế nhập khẩu, thuế giá trị gia tăng đối với nguyên liệu, máy móc nhập khẩu theo hợp đồng gia công, sản xuất hàng xuất khẩu nhưng bị hư hỏng, tổn thất do nguyên nhân khách quan

a) Tìm chu kì của sóng.

b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.

Gợi ý đáp án

a) Chu kì của sóng là T=frac{2pi }{frac{pi }{10}}=20 (giây).

b) Chiều cao của sóng tức là chiều cao của nước đạt được trong một chu kì dao động.

Ta có: h(20)=90cos(frac{pi }{10}times 20)=90 (cm).

Vậy chiều cao của sóng là 90 cm.

2. Luyện tập Hàm số lượng giác

Bài trắc nghiệm số: 4199

Cảm ơn bạn đã theo dõi bài viết Toán 11 Bài 3: Hàm số lượng giác Giải Toán 11 Kết nối tri thức trang 22, 23, 24… 30 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *