Bạn đang xem bài viết ✅ Toán 11 Bài 1: Giới hạn của dãy số Giải Toán 11 Cánh diều trang 59, 60, 61, 62, 63, 64, 65 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Toán lớp 11 tập 1 trang 59, 60, 61, 62, 63, 64, 65 Cánh diều là tài liệu vô cùng hữu ích mà Wikihoc.com muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 11 tham khảo.

Giải Toán 11 Cánh diều Bài 1 Giới hạn của dãy số được biên soạn đầy đủ, chi tiết trả lời các câu hỏi phần bài tập cuối bài trang 64, 65. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết Toán 11 tập 1 Bài 1 Giới hạn của dãy số Cánh diều, mời các bạn cùng theo dõi tại đây.

Toán lớp 11 tập 1 trang 64, 65 – Cánh diều

Bài 1 trang 64

Cho hai dãy số (u_{n}), (v_{n}) với u_{n}=3+frac{1}{n}; v_{n}=5-frac{2}{n^{2}}. Tính các giới hạn sau:

a) lim u_{n}, lim v_{n}.

b) lim(u_{n}+v_{n}), lim(u_{n}-v_{n}), lim(u_{n}.v_{n}), limfrac{u_{n}}{v_{n}}.

Gợi ý đáp án

a) lim u_{n}=lim(3+frac{1}{n})=lim3+limfrac{1}{n}=3

lim v_{n}=lim(5-frac{2}{n^{2}})=lim5-limfrac{2}{n^{2}}=5

b) lim(u_{n}+v_{n})=lim u_{n}+lim v_{n}=3+5=8

lim(u_{n}-v_{n})=lim u_{n}-lim v_{n}=3-5=-2

lim(u_{n}.v_{n})=lim u_{n}.lim v_{n}=3.5=15

limfrac{u_{n}}{v_{n}}=frac{lim u_{n}}{lim v_{n}}=frac{3}{5}

Bài 2 trang 65

Tính các giới hạn sau:

a) limfrac{5n+1}{2n};

b) limfrac{6n^{2}+8n+1}{5n^{2}+3};

c) limfrac{sqrt{n^{2}+5n+3}}{6n+2};

d) lim(2-frac{1}{3^{n}});

e) limfrac{3^{n}+2^{n}}{4.3^{n}};

g) limfrac{2+frac{1}{n}}{3^{n}}.

Tham khảo thêm:   Văn mẫu lớp 7: Tóm tắt văn bản Lễ rửa làng của người Lô Lô (2 mẫu) Những bài văn mẫu lớp 7

Gợi ý đáp án

a) limfrac{5n+1}{2n}=limfrac{5+frac{1}{n}}{2}=frac{5}{2};

b) limfrac{6n^{2}+8n+1}{5n^{2}+3}=limfrac{6+frac{8}{n}+frac{1}{n^{2}}}{5+frac{3}{n^{2}}}=frac{6}{5};

c) limfrac{sqrt{n^{2}+5n+3}}{6n+2}=limfrac{nsqrt{1+frac{5}{n}+frac{3}{n^{2}}}}{n(6+frac{2}{n})}=frac{1}{6};

d) lim(2-frac{1}{3^{n}})=lim2-lim(frac{1}{3})^{n}=2;

e) limfrac{3^{n}+2^{n}}{4.3^{n}}=limfrac{1+(frac{2}{3})^{n}}{4}=frac{1}{4};

g) limfrac{2+frac{1}{n}}{3^{n}}=limfrac{2+0}{+infty}=0.

Bài 3 trang 65

a) Tính tổng của cấp số nhân lùi vô hạn (u_{n}), với (u_{n}), với u_{1}=frac{2}{3}, q=-frac{1}{4}.

b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số.

Gợi ý đáp án

a) S=frac{frac{2}{3}}{1-(-frac{1}{4})}=frac{5}{6};

b) 1,(6)=frac{5}{3}.

Bài 4 trang 65

Từ hình vuông có độ dài cạnh bằng 1, người ta nối các trung điểm của cạnh hình vuông để tạo ra hình vuông mới như Hình 3. Tiếp tục quá trình này đến vô hạn.

a) Tính diện tích S_{n} của hình vuông được tạo thành ở bước thứ n;

b) Tính tổng diện tích của tất cả các hình vuông được tạo thành.

Gợi ý đáp án

a) Ta có: u_{1}=1, q=frac{1}{2}

Do đó: S_{n}=(frac{1}{2})^{n-1}

b) S=frac{1}{1-frac{1}{2}}=2.

Bài 5 trang 65

Có 1 kg chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian T= 24 000 năm thì một nửa số chất phóng xạ này bị phân rã thành chất khác không độc hại đối với sức khỏe của con người (T được gọi là chu kì bán rã). (Nguồn: Đại số và Giải tích 11, NXBGD Việt Nam, 2021)

Gọi u_{n} là khối lượng chất phóng xạ còn lại sau chu kì thứ n.

a) Tìm số hạng tổng quát u_{n} của dãy số (u_{n}).

b) Chứng minh rằng (u_{n}) có giới hạn là 0.

c) Từ kết quả câu b), chứng tỏ rằng sau một số năm nào đó khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người, biết rằng chất phóng xạ này sẽ không độc hại nữa nếu khối lượng chất phóng xạ còn lại bé hơn 10^{-6} g.

Tham khảo thêm:   Phim Đài Loan - Nữ Hoàng Tin Tức

Gợi ý đáp án

a) Sau một chu kì bán rã: u_{1}=frac{1}{2}.1=frac{1}{2} (kg).

Sau hai chu kì bán rã: u_{2}=frac{1}{2}.u_{1}=frac{1}{2^{2}}.

Tổng quát: Sau n chu kì bán rã: u_{n}=frac{1}{2^{n}}.

b) lim_{nrightarrow infty} u_{n}=lim_{nrightarrow infty} (frac{1}{2})^{n}=0.

c) Đổi 10^{-6} g = 10^{-9} kg

Ta có: u_{n}< 10^{-9}Leftrightarrow frac{1}{2^{n}}< 10^{-9}Leftrightarrow 2^{n}>10^{9} Leftrightarrow ngeq 30

Vậy sau 30 chu kì, tức là 30.24000 = 720 000 năm thì 1 kg phóng xạ này không còn độc hại nữa.

Bài 6 trang 65

Gọi C là nửa đường tròn đường kính AB=2R, C_{1} là đường gồm hai nửa đường tròn đường kính frac{AB}{2}, C_{2} là đường gồm bốn nửa đường tròn đường kính frac{AB}{4}, C_{n} là đường gồm 2^{n} nửa đường tròn đường kính frac{AB}{2^{n}},… (Hình 4). Gọi p_{n} là độ dài của C_{n}, S_{n} là diện tích hình phẳng giới hạn bởi C_{n} và đoạn thẳng AB.

a) Tính p_{n}, S_{n}.

b) Tìm giới hạn của các dãy số (p_{n})(S_{n}).

Gợi ý đáp án

a) Ta có: p_{n}=2^{n}.frac{R}{2^{n}}.pi =pi R

S_{n}=2^{n}.(frac{R}{2^{n}})^{2}.frac{pi }{2}=frac{pi R^{2}}{2}.frac{1}{2^{n}}

b) Ta có: lim p_{n}=pi R, lim S_{n}=0

Cảm ơn bạn đã theo dõi bài viết Toán 11 Bài 1: Giới hạn của dãy số Giải Toán 11 Cánh diều trang 59, 60, 61, 62, 63, 64, 65 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *