Bạn đang xem bài viết ✅ Toán 10 Bài tập cuối chương IX – Kết nối tri thức với cuộc sống Giải SGK Toán 10 trang 88 – Tập 2 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán 10 Bài tập cuối chương IX: Tính xác suất theo định nghĩa cổ điển sách Kết nối tri thức với cuộc sống là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 88, 89 tập 2.

Giải SGK Toán 10 Bài tập cuối chương 9 tập 2 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa; có thể tự học, tự kiểm tra được kết quả học tập của bản thân.

Giải Toán 10 trang 88, 89 Kết nối tri thức – Tập 2

Bài 9.13 trang 88

Một hộp có bốn loại bi: bi xanh, bi đỏ, bi trắng và bi vàng. Lấy ngẫu nhiên ra một viên bi. Gọi E là biến cố: “Lấy được viên bi đỏ”. Biến cố đối của E là biến cố

A. Lấy được viên bi xanh.

B. Lấy được viên bi vàng hoặc bi trắng.

C. Lấy được viên bi trắng.

D. Lấy được viên bi vàng hoặc bi trắng hoặc bi xanh.

Tham khảo thêm:   Lịch sử 7 Bài 3: Phong trào văn hóa Phục hưng Soạn Sử 7 trang 11 sách Cánh diều

Gợi ý đáp án

Đáp án D

Bài 9.14 trang 88

Rút ngẫu nhiên ra một thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30 . Xác suất để số trên tấm thẻ được rút ra chia hết cho 5 là:

A. frac{1}{30}

B. frac{1}{5}

C. frac{1}{3}

D. frac{2}{5}.

Gợi ý đáp án

Đáp án B

Bài 9.15 trang 88

Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 4 là

A. frac{1}{7}

B. frac{1}{6}

C. frac{1}{8}

D. frac{2}{9}.

Gợi ý đáp án

Đáp án B

Bài 9.16 trang 88

Một tổ trong lớp 10T có 4 bạn nữ và 3 bạn nam. Giáo viên chọn ngẫu nhiên hai bạn trong tổ đó tham gia đội làm báo của lớp. Xác suất để hai bạn được chọn có một bạn nam và một bạn nữ là

A. frac{4}{7}

B. frac{2}{7}

C. frac{1}{6}

D. frac{2}{21}.

Gợi ý đáp án

Đáp án A

Bài 9.17 trang 88

Một hộp đựng bảy thẻ màu xanh đánh số từ 1 đến 7; năm thẻ màu đỏ đánh số từ 1 đến 5 và hai thẻ màu vàng đánh số từ 1 đến 2 . Rút ngẫu nhiên ra một tấm thẻ.

a. Mô tả không gian mẫu.

b. Mỗi biến cố sau là tập con nào của không gian mẫu?

A: “Rút ra được thẻ màu đỏ hoặc màu vàng”;

B: “Rút ra được thẻ mang số hoặc là 2 hoạc là 3 “.

Gợi ý đáp án

a. Không gian mẫu: Omega = {X1; X2; X3; X4; X5; X6; X7; D1; D2; D3; D4; D5; V1; V2}

(Kí hiệu X là màu xanh, D là màu đỏ, V là màu vàng).

Rightarrow n(Omega ) = 14.

b.

A= {X1; X2; X3; X4; X5; X6; X7; D1; D2; D3; D4; D5}.

B = {X2; X3; D2; D3; V2}.

Bài 9.18 trang 88

Có hộp I và hộp II, mỗi hộp chứa 5 tấm thẻ đánh số từ 1 đến 5 . Từ mỗi hộp, rút ngẫu nhiên ra một tấm thẻ. Tính xác suất để thẻ rút ra từ hộp II mang số lớn hơn số trên thẻ rút ra từ hộp I.

Tham khảo thêm:   Giáo trình môn: Thiết kế Cầu Trường trung cấp Cầu đường và dạy nghề

Gợi ý đáp án

Rút từ hộp I có 5 cách, từ hợp II có 5 cách, số khả năng xảy ra khi rút mỗi hộp 1 thẻ là: 5.5 = 25, hay n(Omega ) = 25.

1 2 3 4 5
1 11 12 13 14 15
2 21 22 23 24 25
3 31 32 33 34 35
4 41 42 43 44 45
5 51 52 53 54 55

Biến cố A: “Thẻ rút ra từ hộp II mang số lớn hơn số trên thẻ rút ra từ hộp I”.

A = {11; 12; 13 14; 15; 16; 23; 24; 25; 26; 34; 35; 36; 45; 46; 56}.

Rightarrow n(A) = 15

Rightarrow P(A) = frac{15}{25}= frac{3}{5}.

Bài 9.19 trang 88

Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để:

a. Tổng số chấm trên hai con xúc xắc bằng 8 ;

b. Tồng số chấm trên hai con xúc xắc nhỏ hơn 8 .

Gợi ý đáp án

Gieo hai con xúc xắc nên số kết quả có thể xảy ra là: 6.6 = 36, hay n(Omega) = 36.

a. Biến cố A: “Tổng số chấm trên hai con xúc xắc bằng 8”.

Có 8 = 2 + 6 = 3 + 5 = 4 + 4. Nên số kết quả thuận lợi với A là: 5.

P(A) = frac{5}{36}.

b. Biến cố B: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”.

Nếu số chấm của xúc xắc thứ nhất là 1 thì số chấm xúc xắc thứ hai có thể từ 1 đến 6: có 6 cách.

Nếu số chấm của xúc xắc thứ nhất là 2 thì số chấm xúc xắc thứ hai có thể từ 1 đến 5: có 5 cách.

Nếu số chấm của xúc xắc thứ nhất là 3 thì số chấm xúc xắc thứ hai có thể từ 1 đến 4: có 4 cách.

Nếu số chấm của xúc xắc thứ nhất là 4 thì số chấm xúc xắc thứ hai có thể từ 1 đến 3: có 3 cách.

Nếu số chấm của xúc xắc thứ nhất là 5 thì số chấm xúc xắc thứ hai có thể từ 1 đến 2: có 2 cách.

Nếu số chấm của xúc xắc thứ nhất là 6 thì số chấm xúc xắc thứ hai có thể từ 1: có 1 cách.

Tham khảo thêm:   Đề thi học kì I môn Ngữ Văn lớp 11 nâng cao dành cho các lớp D (Đề 01) - THPT Chu Văn An (2012 - 2013) Đề thi học kì

Rightarrow Số cách là: 6+5+4+3+2+1 = 21 cách, hay n(B) = 21.

Rightarrow P(B) = frac{21}{36}=frac{7}{12}.

Bài 9.20 trang 89

Dự báo thời tiết trong ba ngày thứ Hai, thứ Ba, thứ Tư của tuần sau cho biết, trong mỗi ngày này, khả năng có mưa và không mưa như nhau.

a. Vẽ sơ đồ hình cây mô tả không gian mẫu.

b. Tính xác suất của các biến cố:

F: “Trong ba ngày, có đúng một ngày có mưa”;

G: “Trong ba ngày, có ít nhất hai ngày không mưa”.

Gợi ý đáp án

a. Kí hiệu M là mưa, KM là không mưa.

n(Omega ) = 8.

b.

  • Biến cố F:

Theo sơ đồ, n(F) = 3

Rightarrow P(F) = frac{3}{8}.

  • Biến cố G:

Theo sơ đồ, n(G) = 4

Rightarrow P(F) = frac{4}{8}=frac{1}{2}.

Bài 9.21 trang 89

Gieo một đồng xu cân đối liên tiếp bốn lần.

a. Vẽ sơ đồ hình cây mô tả không gian mẫu.

b. Tính xác suất để trong bốn lần gieo đó có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa.

Gợi ý đáp án

a. Kí hiệu S là mặt sấp, N là mặt ngửa

n(Omega ) = 16.

b. Biến cố A: “Trong bốn lần gieo đó có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa.”

n(A) = 6

Rightarrow P(A) = frac{6}{16}=frac{3}{8}.

Bài 9.22 trang 89

Chọn ngẫu nhiên 4 viên bi từ một túi đựng 4 viên bi đỏ và 6 viên bi xanh đôi một khác nhau. Gọi A là biến cố: “Trong bốn viên bi đó có cả bi đỏ và cả bi xanh”. Tính P(A) và P(overline{A}).

Gợi ý đáp án

Chọn 4 viên bi từ 10 viên bi, thì số cách là: C_{10}^{4}= 210 cách.

Rightarrow n(Omega ) = 210.

Xét biến cố A, để có cả đỏ và xanh thì có các trường hợp sau:

  • Trường hợp 1: có 1 xanh, 3 đỏ, số cách là: 6.C_{4}^{3} = 24
  • Trường hợp 2: có 2 xanh, 2 đỏ, số cách là: C_{6}^{2}.C_{4}^{2} = 90.
  • Trường hợp 3: có 3 xanh, 1 đỏ, số cách là: C_{6}^{3}.4 = 80.

Rightarrow n(A) = 24+90+80 = 194.

Rightarrow P(A) = frac{194}{210}= frac{97}{105}.

Rightarrow P(overline{A}) = 1 - P(A) = frac{8}{105}.

Cảm ơn bạn đã theo dõi bài viết Toán 10 Bài tập cuối chương IX – Kết nối tri thức với cuộc sống Giải SGK Toán 10 trang 88 – Tập 2 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *