ÔN THI ĐẠI HỌC MÔN TOÁN CHUYÊN ĐỀ: HÌNH HỌC GIẢI TÍCH TRONG KHÔNG GIAN OXYZ
VẤN ĐỀ 1: MẶT PHẲNG VÀ ĐƯỜNG THẲNG
A. PHƯƠNG PHÁP GIẢI
I. Tọa độ
II. Mặt phẳng
– Vecto pháp tuyến của mặt phẳng là vecto khác vecto 0 và có giá vuông góc mặt phẳng.
– Phương trình tổng quát: (α): Ax + By + Cz + D = 0 (A2 + B2 + C2) # 0
–
→ (α): A(x – xo) + B(y – yo) + C(z – zo) = 0
– Mặt phẳng chắn: (α) cắt Ox, Oy, Oz lần lượt tại A(a; 0; 0), B(0; b; 0), C(0; 0; c), (a, b, c # 0)
– Mặt phẳng đặc biệt: (Oxy): z = 0; (Oxz): y = 0, (Oyz): x = 0
III. Đường thẳng
– Vector chỉ phương của đường thẳng là vecto khác 0 và có giá cùng phương với đường thẳng
B. ĐỀ THI
Bài 1: Đại học khối D năm 2011
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 3) và đường thẳng d: . Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc với đường thẳng d và cắt trục Ox.
Giải:
Cách 1:
Cách 2:
Download tài liệu để xem chi tiết.
Cảm ơn bạn đã theo dõi bài viết Ôn thi Đại học môn Toán – Chuyên đề: Hình học giải tích trong không gian Oxyz Bài tập toán giải tích của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.