Bạn đang xem bài viết ✅ Hệ thống kiến thức cần ghi nhớ môn Toán lớp 4, 5 Tổng hợp kiến thức môn Toán lớp 4 và 5 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Hệ thống kiến thức cần ghi nhớ môn Toán lớp 4, 5 là tài liệu nhằm giúp các thầy cô và quý phụ huynh hướng dẫn các em học sinh nắm chắc các dạng Toán trong chương trình học lớp 4 và 5. Tài liệu được biên soạn chi tiết theo từng dạng Toán và có ví dụ minh họa đi kèm giúp các em học sinh nắm được cách làm các dạng Toán cơ bản và nâng cao lớp 4, 5. Đây là bộ tài liệu rất hay và hữu ích dành cho quý thầy cô giáo và các em học sinh. Bộ tài liệu này nhằm giúp các thầy cô giáo tiết kiệm thời gian biên soạn, tổng hợp kiến thức bên cạnh đó sẽ là tài liệu giúp các em học sinh ôn tập và củng cố kiến thức môn Toán lớp 4 và 5 để chuẩn bị cho các kỳ thi đạt kết quả tốt nhất.

Các dạng Toán cơ bản lớp 4

Các dạng Toán về phương pháp khử cho học sinh lớp 4, 5

Số tự nhiên

1. Để viết các số tự nhiên, người ta dùng mười kí hiệu (chữ số) là : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

2. Các chữ số đều nhỏ hơn 10.

3. Số 0 là số tự nhiên nhỏ nhất (nằm ở gốc tia số).

4. Không có số tự nhiên lớn nhất.

5. Các số lẻ có chữ số hàng đơn vị là : 1, 3, 5, 7, 9.

4. Các số chẵn có chữ số hàng đơn vị là : 0, 2, 4, 6 , 8.

7. Hai số tự nhiên liên tiếp (liền nhau) hơn (hoặc kém) nhau 1 đơn vị.

Tham khảo thêm:   Đề thi thử THPT quốc gia 2018 trường THPT Thủ Đức, TP HCM Đề thi minh họa THPT Quốc gia môn tiếng Anh

8. Hai số lẻ liên tiếp hơn (hoặc kém) 2 đơn vị.

9. Hai số chẵn liên tiếp hơn (hoặc kém) 2 đơn vị.

10. Có mười số có một chữ số là : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

11. Có 90 số có hai chữ số là các số từ 10 đến 99.

12. Có 900 số có ba chữ số là các số từ 100 đến 999.

13. Có 9000 số có bốn chữ số là các số từ 1000 đến 9999.

14. Có 900 000 000 có chín chữ số là các số từ 100 000 000 đến 999 999 999.

15. Các số nhỏ nhất có : hai, ba, bốn, … chín chữ số là 10, 100, 1000, …. 100 000 000.

16. Các số lớn nhất có : hai, ba, bốn, … chín chữ số là : 99, 999, 9 999, ….. 999 999 999.

17. Trong dãy số tự nhiên liên tiếp, cứ một số chẵn lại đến một số lẻ rồi lại đến một số chẵn… Vì vậy, nếu :

a. Dãy số bắt đầu từ số lẻ và kết thúc là số chẵn thì số lượng các số lẻ bằng số lượng các số chẵn.

– Dãy số bắt đầu từ số chẵn và kết thúc là số lẻ thì số lượng các số chẵn bằng số lượng các số lẻ.

b. Nếu dãy số bắt đầu từ số lẻ và kết thúc là số lẻ thì số lượng các số lẻ nhiều hơn số lượng các số chẵn 1 số.

– Nếu dãy số bắt đầu từ số chẵn và kết thúc là số chẵn thì số lượng các số chẵn nhiều hơn số lượng các số lẻ 1 số.

18. a) Trong một dãy số tự nhiên liên tiếp bắt đầu từ số 1 thì số lượng các số trong dãy số chính bằng giá trị số cuối cùng của dãy số ấy.

Chẳng hạn dãy số : 1, 2, 3, 4, … 7 892 653 có 7 892 653 số tự nhiên.

Tham khảo thêm:   Luật đấu giá tài sản 2016 Luật số 01/2016/QH14

b) Trong dãy số tự nhiên liên tiếp bắt đầu từ số lớn hơn 1 thì số lượng các số trong dãy số bằng hiệu giữa số cuối cùng với số đầu tiên của dãy số cộng với 1 ( hoặc bằng hiệu giữa số cuối cùng với số liền trước số đầu tiên).

VD : Dãy số tự nhiên liên tiếp từ 15 đến 75 có số lượng số tự nhiên là :

75 – 15 + 1 = 61 số ( hoặc 75 – 14 = 61 số)

Chú ý : Cụm từ : “Số lượng các số” đôi khi người ta nói ngắn gọn là : “Số các số”.

19. Có thể dùng các chữ cái để viết các số tự nhiên.

VD: Để biểu thị cho một số có ba chữ số nào đó người ta viết số đó là abc và đọc là a trăm, b chục, cđơn vị, trong đó b, c thay cho các chữ số từ 0 đến 9, riêng a từ 1 đến 9. Số này phân tích như sau :

abc = a x 100 + b x 10 + c hoặc abc = a00 + b0 + c

Các phép tính với số tự nhiên

Phép cộng:

1. Nếu ta thêm hay bớt bao nhiêu đơn vị ở một số hạng thì tổng cũng tăng thêm hay bớt đi bấy nhiêu đơn vị.

(a – n) + (b – n) = a + b – n x 2

(a + n) + (b + n) = (a + b) + n x 2

2. Trong một tổng gồm hai số hạng, nếu ta thêm vào số hạng này bao nhiêu đơn vị và bớt ở số hạng kia bấy nhiêu đơn vị thì tổng không thay đổi.

(a +n) + (b – n) = a + b

3. Tổng không đổi nếu ta đổi chỗ các số hạng. (a + b = b + a)

4. Khi cộng một tổng hai số với số thứ ba ta có thể lấy số thứ nhất cộng với tổng của số thứ hai và số thứ ba.

(a+b) + c = a + (b + c)

5. Muốn cộng một số với một hiệu, ta cộng số đó với số bị trừ rồi trừ đi số trừ.

Vận dụng để tính nhẩm:

127 + 68 = 127 + (70 – 2) = 127 + 70 – 2 = 197 – 2 = 195

Tham khảo thêm:   Phân tích câu thơ: "Mắt trừng gửi mộng qua biên giới/Đêm mơ Hà Nội dáng kiều thơm" Tây Tiến của Quang Dũng

6. Tổng của hai số có một chữ số nếu bằng một số có hai chữ số thì chữ số hàng chục của tổng là 1.

VD: a + b = cd thì c =1 Vì a < 10, b < 10 nên a + b < 10 + 10 -> a = b < 20

7. Tổng của hai số có hai chữ số mà là số có 3 chữ số thì chữ số hàng trăm của tổng là 1.

Hệ thống kiến thức cần ghi nhớ môn Toán lớp 4, 5

8. Tổng của hai số chẵn là số chẵn

VD: 4 + 6 = 10 12 + 16 = 28

9. Tổng các số chẵn là số chẵn.

VD: 4 + 6 + 8 = 18

10. Tổng của hai số lẻ là số chẵn.

VD: 7 + 5 = 12

11. Tổng của một số chẵn các số lẻ là số chẵn

VD: 1 + 3 + 5 + 7 + 9 + 11 = 36.

Trong đó:

– Các số hạng đều là số lẻ;

– Số lượng số hạng là số chẵn (6 số);

– Tổng số là số chẵn (36)

12.Tổng của một số lẻ với một số chẵn là số lẻ.

VD: 6 + 9 = 15

13. Tổng của một số lẻ các số lẻ là số lẻ.

VD: 1 + 3 + 5 + 7 + 9 + 11 + 13 = 49.

Trong đó:

– Các số hạng đều là số lẻ;

– Số lượng số hạng là số lẻ (7 số);

– Tổng số là số lẻ (49)

14. Nếu một số hạng được gấp lên n lần, đồng thời các số hạng còn lại được giữ nguyên thì tổng đó được tăng lên một số đúng bằng (n – 1) lần số hạng được gấp lên đó.

15. Nếu một số hạng bị giảm đi n lần, đồng thời các số hạng còn lại được giữ nguyên thì tổng đó bị giảm đi một số đúng bằng Hệ thống kiến thức cần ghi nhớ môn Toán lớp 4, 5 số hạng bị giảm đi đó.

Tài liệu vẫn còn, mời các bạn tải về để xem tiếp

Cảm ơn bạn đã theo dõi bài viết Hệ thống kiến thức cần ghi nhớ môn Toán lớp 4, 5 Tổng hợp kiến thức môn Toán lớp 4 và 5 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *