SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN
|
Câu 1: (1,5 điểm).
1. Rút gọn biểu thức:
2. Giải hệ phương trình:
Câu 2: (2,0 điểm).
Cho biểu thức (với x ≥ 0, x # 1).
1. Rút gọn A.
2. Tìm giá trị lớn nhất của A.
Câu 3: (2,0 điểm).
Cho phương trình x2 – 2(m + 1)x + 2m = 0 (1) (với x là ẩn, m là tham số).
1. Giải phương trình (1) với m = 0.
2. Tìm m để phương trình (1) có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √12.
Câu 4: (3,0 điểm).
Cho nửa đường tròn tâm O, đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1. Chứng minh tứ giác BCFM là tứ giác nội tiếp.
2. Chứng minh EM = EF.
3. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo không đổi khi M di chuyển trên cung BD.
Câu 5: (1,5 điểm).
1. Chứng minh rằng phương trình (n + 1)x2 + 2x – n(n + 2)(n + 3) = 0 (x là ẩn, n là tham số) luôn có nghiệm hữu tỉ với mọi số nguyên n.
2. Giải phương trình: .
Download tài liệu để xem thêm chi tiết.
Cảm ơn bạn đã theo dõi bài viết Đề thi tuyển sinh lớp 10 THPT tỉnh Ninh Bình năm học 2013 – 2014 môn Toán Sở GD-ĐT Ninh Bình của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.