SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN
|
Câu I: (2,5 điểm)
1. Thực hiện phép tính:
2. Cho biểu thức: Với a > 0; a # 1; a # 4
a) Rút gọn P
b) So sánh giá trị của P với số 1/3
Câu II: (1,0 điểm)
Cho hai hàm số bậc nhất y = -5x + (m+1) và y = 4x + (7 – m) (với m là tham số). Với giá trị nào của m thì đồ thị hai hàm số trên cắt nhau tại một điểm trên trục tung. Tìm tọa độ giao điểm đó.
Câu III: (2,0 điểm)
Cho hệ phương trình: (m là tham số)
1. Giải hệ phương trình khi m = 2.
2. Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn: 2x + y ≤ 3.
Câu IV: (1,5 điểm)
Cho phương trình bậc hai x2 + 4x – 2m + 1 = 0 (1) (với m là tham số)
a) Giải phương trình (1) với m = -1.
b) Tìm m để phương trình (1) có hai nghiệm x1; x2 thỏa mãn điều kiện x1 -x2 =2.
Câu V: (3,0 điểm)
Cho đường tròn tâm O bán kính R và một điểm A sao cho OA = 3R. Qua A kẻ 2 tiếp tuyến AP và AQ với đường tròn (O ; R) (P, Q là 2 tiếp điểm). Lấy M thuộc đường tròn (O ; R) sao cho PM song song với AQ. Gọi N là giao điểm thứ hai của đường thẳng AM với đường tròn (O ; R). Tia PN cắt đường thẳng AQ tại K.
1) Chứng minh tứ giác APOQ là tứ giác nội tiếp và KA2 = KN.KP.
2) Kẻ đường kính QS của đường tròn (O ; R). Chứng minh NS là tia phân giác của góc PNM.
3) Gọi G là giao điểm của 2 đường thẳng AO và PK. Tính độ dài đoạn thẳng AG theo bán kính R.
Download tài liệu để xem thêm chi tiết.
Cảm ơn bạn đã theo dõi bài viết Đề thi tuyển sinh lớp 10 THPT tỉnh Lào Cai năm học 2013 – 2014 môn Toán (Có đáp án) Sở GD-ĐT Lào Cai của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.