ĐẠI HỌC QUỐC GIA HÀ NỘI
|
KỲ THI TUYỂN SINH LỚP 10 HỆ CHUYÊN
|
Câu I.
1) Giải phương trình:
2) Giải hệ phương trình:
Câu II.
1) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn đẳng thức: (x + y + 1)(xy + x + y) = 5 + 2(x + y)
2) Giả sử x, y là các số thực dương thỏa mãn điêu kiện
Tìm giá trị nhỏ nhất của biểu thức:
Câu III.
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Gọi M là một điểm trên cung nhỏ BC (M khác B, C và AM không đi qua O). Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M.
1) Gọi D là điểm đối xứng với điểm M qua O. Chứng minh rằng N, P, D thẳng hàng
2) Đường tròn đường kính MP cắt MD tại Q khác M. Chứng minh rằng Q là tâm đườn tròn nội tiếp tam giác AQN.
Câu IV.
Giả sử a, b, c là các số thực dương thỏa mãn a ≤ b ≤ 3 ≤ c; c ≥ b + 1; a + b ≥ c
Tìm giá trị nhỏ nhất của biểu thức:
Download tài liệu để xem thêm chi tiết.
Cảm ơn bạn đã theo dõi bài viết Đề thi tuyển sinh lớp 10 THPT Chuyên trường ĐH Khoa học tự nhiên năm 2012 – 2013 môn Toán Đề thi môn Toán của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.