SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NGUYỄN DU
|
Câu 1: (3,0 điểm)
1) Giải phương trình:
2) Chứng minh rằng:
Câu 2: (3,0 điểm)
1) Tìm nghiệm nguyên của phương trình: 3xy + 6x + y – 52 = 0
2) Tìm các số thực x, y thỏa mãn:
Câu 3: (2,0 điểm)
Cho đường tròn (O) đường kính AB = 2R. Gọi C là điểm bất kỳ thuộc (O) (0 < CA < CB). Qua B vẽ đường thẳng d vuông góc AB, tiếp tuyến tại C cắt đường thẳng d tại D và đường thẳng AB tại E, OC cắt đường thẳng d tại F.
1) Chứng minh tứ giác BCEF là hình thang.
2) Gọi G là giao điểm của AC và EF. Giả sử tứ giác ODCG là hình bình hành. Tính OF theo R.
Câu 4: (1,0 điểm)
Xác định các góc của tam giác ABC biết AC < AB, đường cao AH và đường trung tuyến AM chia góc thành ba phần bằng nhau.
Câu 5: (1,0 điểm)
Số thực x thay đổi và thỏa mãn điều kiện: x2 + (3 – x)2 ≥ 5. Tìm giá trị nhỏ nhất của biểu thức: A = x4 + (3 – x)4 + 6x2(3 – x)2.
Download tài liệu để xem thêm chi tiết.
Cảm ơn bạn đã theo dõi bài viết Đề thi tuyển sinh lớp 10 THPT chuyên Nguyễn Du tỉnh Đăk Lăk năm 2012 – 2013 môn Toán Đề thi tuyển sinh lớp 10 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.