Bạn đang xem bài viết ✅ Đề thi tuyển sinh lớp 10 THPT chuyên ĐH Khoa học tự nhiên năm 2011 – 2012 Môn: Toán (vòng 1 + vòng 2) – có đáp án ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ CHÍNH THỨC

KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
NĂM HỌC 2011 – 2012

Môn: TOÁN (Vòng 1)
Thời gian làm bài: 120 phút (không kể thời gian giao đề)

Câu I.

1) Giải hệ phương trình:

2) Giải phương trình:

Câu II.

1) Chứng minh rằng không tồn tại các bộ ba số nguyên (x, y, z) thỏa mãn đẳng thức: x4 + y4 = 7z4 + 5

2) Tìm tất cả các cặp số nguyên (x, y) thỏa mãn đẳng thức: (x + 1)4 – (x – 1)4 = y3

Câu III.

Cho hình bình hành ABCD với góc BAD < 90o .Đường phân giác của góc BCD cắt đường tròn ngoại tiếp tam giác BCD tại O khác C. Kẻ đường thẳng (d) đi qua A và vuông góc với CO. Đường thẳng (d) lần lượt cắt các đường thẳng CB, CD tại E, F.

Tham khảo thêm:   Khoa học lớp 4 Bài 15: Thực vật cần gì để sống và phát triển? Giải Khoa học lớp 4 sách Chân trời sáng tạo

1) Chứng minh rằng ∆OBE = ∆ODC.

2) Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác CEF.

3) Gọi giao điểm của OC và BD là I, chứng minh rằng IB.BE.EI = ID.DF.FI

Câu IV.

Với , x y là những số thực dương, tìm giá trị nhỏ nhất của biểu thức:

Môn: TOÁN (Vòng 2)
Thời gian làm bài: 150 phút (không kể thời gian giao đề)

Câu I.

1) Giải phương trình:

2) Giải hệ phương trình:

Câu II.

1) Với mỗi số thực a ta gọi phần nguyên của a là số nguyên lớn nhất không vượt quá a và ký hiệu là [a]. Chứng minh rằng với mọi số nguyên dương n, biểu thức không biểu diễn được dưới dạng lập phương của một số nguyên dương.

2) Với x, y, z là các số thực dương thỏa mãn đẳng thức xy + yz + zx = 5, tìm giá trị nhỏ nhất của biểu thức:

Câu III.

Cho hình thang ABCD với BC song song AD. Các góc BAD và CDA là các góc nhọn. Hai đường chéo AC và BD cắt nhau tại I. P là điểm bất kỳ trên đoạn thẳng BC (P không trùng với B, C). Giả sử đường tròn ngoại tiếp tam giác BIP cắt đoạn thẳng PA tại M khác P và đường tròn ngoại tiếp tam giác CIP cắt đoạn thẳng PD tại N khác P.

1) Chứng minh rằng năm điểm A, M, I, N, D cùng nằm trên một đường tròn. Gọi đường tròn này là (K).

2) Giả sử các đường thẳng BM và CN cắt nhau tại Q, chứng minh rằng Q cũng nằm trên đường tròn (K)

Tham khảo thêm:   Quyết định 1143/QĐ-KTNN Quy chế quy hoạch cán bộ lãnh đạo, quản lý của Kiểm toán Nhà nước

3) Trong trường hợp P, I, Q thẳng hàng, chứng minh rằng

Câu IV.

Giả sử A là một tập con của tập các số tự nhiên ℕ. Tập A có phần tử nhỏ nhất là 1, phần tử lớn nhất là 100 và mỗi x thuộc A (x ≠ 1) luôn tồn tại a, b cũng thuộc A sao cho x = a + b (a có thể bằng b). Hãy tìm một tập A có số phần tử nhỏ nhất.

Download tài liệu để xem thêm chi tiết.

Cảm ơn bạn đã theo dõi bài viết Đề thi tuyển sinh lớp 10 THPT chuyên ĐH Khoa học tự nhiên năm 2011 – 2012 Môn: Toán (vòng 1 + vòng 2) – có đáp án của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *