Bạn đang xem bài viết ✅ Đề thi tuyển sinh lớp 10 THPT chuyên Đại học Quốc Gia Hà Nội năm học 2012 – 2013 Môn: Toán ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI CHÍNH THỨC

ĐỀ THI VÀO LỚP 10 HỆ THPT CHUYÊN
NĂM HỌC: 2012 – 2013

ĐỀ THI MÔN: TOÁN

Câu I.

1) Giải phương trình Đề thi tuyển sinh lớp 10 THPT chuyên Đại học Quốc Gia Hà Nội

2) Giải hệ phương trình:
Đề thi tuyển sinh lớp 10 THPT chuyên Đại học Quốc Gia Hà Nội

Câu II.

1) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn đẳng thức: (x + y + 1)(xy + x + y) = 5 + 2(x + y)

2) Giả sử x, y la các số thực dương thỏa mãn điêu kiện:

Tìm giá trị nhỏ nhất của biểu thức: Đề thi tuyển sinh lớp 10 THPT chuyên Đại học Quốc Gia Hà Nội

Câu III.

Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Gọi M là một điểm trên cung nhỏ BC (M khác B, C và AM không đi qua O). Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M.

1) Gọi D là điểm đối xứng với điểm M qua O. Chứng minh rằng N, P, D thẳng hàng

Tham khảo thêm:   Danh mục hóa chất tạm thời phải xây dựng phiếu an toàn hóa chất

2) Đường tròn đường kính MP cắt MD tại Q khác M. Chứng minh rằng Q là tâm đườn tròn nội tiếp tam giác AQN.

Câu IV.

Giả sử a,b,c là các số thực dương thỏa mãn a ≤ b ≤ 3 ≤ c; c ≥ b + 1; a + b ≥ c. Tìm giá trị nhỏ nhất của biểu thức:
Đề thi tuyển sinh lớp 10 THPT chuyên Đại học Quốc Gia Hà Nội

Download tài liệu để xem thêm chi tiết.

Cảm ơn bạn đã theo dõi bài viết Đề thi tuyển sinh lớp 10 THPT chuyên Đại học Quốc Gia Hà Nội năm học 2012 – 2013 Môn: Toán của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *