SỞ GIÁO DỤC VÀ ĐÀO TẠO NINH THUẬN (Đề thi chính thức) |
KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2011 – 2012 Khóa ngày: 17 / 11 / 2011 Môn thi: TOÁN Cấp: THPT Thời gian làm bài: 180 phút (Không kể thời gian phát đề) |
Bài 1 (5,0 điểm).
Tìm m để phương trình có nghiệm
Bài 2 (4,0 điểm).
Có bao nhiêu số nguyên dương gồm 6 chữ số mà tích các chữ số của số này bằng 3500?
Bài 3 (5,0 điểm).
Cho góc vuông xOy và điểm A (A ≠ O) cố định trên đường phân giác Om của góc ấy. Một đường tròn (C ) thay đổi luôn đi qua hai điểm A, O cố định và cắt Ox tại M, cắt Oy tại N.
a) Chứng minh rằng khi đường tròn (C ) thay đổi thì tổng OM + ON có giá trị không đổi.
b) Tìm tập hợp các điểm I là trung điểm của đoạn thẳng MN khi đường tròn (C ) thay đổi.
Bài 4 (3,0 điểm).
Cho ba số dương a, b, c thỏa mãn điều kiện 2a + 3b + 4c = 1.
Chứng minh rằng:
Bài 5 (3,0 điểm).
Download tài liệu để xem thêm chi tiết
Cảm ơn bạn đã theo dõi bài viết Đề thi học sinh giỏi tỉnh Ninh Thuận môn Toán cấp THPT năm học 2011 – 2012 Đề thi học sinh giỏi tỉnh của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.