SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
KỲ THI CHỌN HSG LỚP 9 THCS CẤP TỈNH
|
Câu 1: (4,0 điểm)
1. Giải hệ phương trình:
2. Cho phương trình x4 – 2mx2 + 2m – 1 = 0 (1)
a. Tìm m để (1) có 4 nghiệm x1, x2, x3, x4 thỏa mãn:
b. Giải phương trình (1) với m vừa tìm được ở a.
Câu 2: (4,0 điểm)
Cho (P): y = x2; (d): y = x + m
Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt A, B sao cho: tam giác OAB là tam giác vuông
Câu 3: (4,0 điểm)
1. Cho 4 số a, b, c, d thỏa mãn điều kiện: a + b + c + d =
2. Chứng minh rằng: a2 + b2 + c2 + d2 ≥ 1
2. Cho m # -1 và a3 – 3a2 + 3a(m + 1) – (m + 1)2 = 0.
Hãy tìm giá trị nhỏ nhất (GTNN) của a.
Câu 4: (3,0 điểm)
Chứng minh rằng:
Câu 5: (5,0 điểm)
Cho tam giác ABC có các phân giác trong các góc nhọn BAC, ACB, CBA theo thứ tự cắt các cạnh đối tại các điểm M, P, N. Đặt a = BC, b = CA, c = AB; SΔMNP, SΔABC theo thứ tự là diện tích của tam giác MNP và tam giác ABC.
a. Chứng minh rằng:
b. Tìm giá trị lớn nhất (GTLN) của .
Download tài liệu để xem thêm chi tiết
Cảm ơn bạn đã theo dõi bài viết Đề thi học sinh giỏi lớp 9 THCS tỉnh Tiền Giang năm 2012 – 2013 môn Toán – Có đáp án Sở GD-ĐT Tiền Giang của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.