SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC |
KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH LỚP 9 THCS ĐỀ THI MÔN: TOÁN |
Câu 1: (2.5 điểm) Cho biểu thức
a) Rút gọn biểu thức A.
b) Tìm x nguyên để A có giá trị nguyên.
Câu 2: (2.5 điểm)
Số đo hai cạnh góc vuông của một tam giác là nghiệm của phương trình bậc hai (m – 2)x2 – 2(m – 1)x + m = 0. Xác định m để số đo đường cao ứng với cạnh huyền của tam giác đã cho là
Câu 3: (3.0 điểm)
Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Tiếp tuyến chung gần B của hai đường tròn lần lượt tiếp xúc (O) và (O’) tại C và D. Qua A kẻ đường thẳng song song CD cắt (O) và (O’) lần lượt tại M và N. Các đường thẳng BC, BD lần lượt cắt MN tại P và Q. Các đường thẳng CM, DN cắt nhau tại E. Chứng minh rằng:
a) Các đường thẳng AE và CD vuông góc nhau.
b) Tam giác EPQ cân.
Câu 4: (1.0 điểm) Cho x, y, z > 0 thỏa mãn: x2 + y2 + z2 = 3. Chứng minh:
Câu 5: (1.0 điểm) Cho a, b, c, d là các số nguyên thỏa mãn: a5 + b5 = 4(c5 + d5)
Chứng minh rằng: a + b + c + d chia hết cho 5.
Download tài liệu để xem thêm chi tiết
Cảm ơn bạn đã theo dõi bài viết Đề thi học sinh giỏi lớp 9 THCS tỉnh Quảng Bình môn Toán (năm học 2010 – 2011) Đề thi học sinh giỏi tỉnh của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.