Bạn đang xem bài viết ✅ Đề thi học sinh giỏi lớp 9 THCS tỉnh Lâm Đồng môn Toán Năm học 2010 – 2011 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

SỞ GIÁO DỤC & ĐÀO TẠO
LÂM ĐỒNG

KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
NĂM HỌC 2010- 2011

MÔN THI: TOÁN – LỚP 9 THCS
Thời gian:
150 phút (Không kể thời gian giao đề)

Ngày thi: 18/02/2011

Câu 1: (2,0 điểm)

Rút gọn

Câu 2: (2,0 điểm)

Cho hàm số y = f(x) = (3m2 – 7m +5)x – 2011 (*). Chứng minh hàm số (*) luôn đồng biến trên R với mọi m.

Câu 3: (2,0 điểm)

Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Trên đường thẳng AB lấy điểm M sao cho A nằm giữa M và B. Từ M kẻ cát tuyến MCD với đường tròn (O) và tiếp tuyến MT với đường tròn (O’) (T là tiếp điểm). Chứng minh MC.MD = MT2.

Câu 4: (2,0 điểm)

Cho hai số dương x, y thỏa mãn điều kiện 3x + y – 1 = 0. Tìm giá trị nhỏ nhất của biểu thức B = 3x2 + y2.

Câu 5: (1,5 điểm)

Chứng minh tổng C = 1 + 2 + 22 + … + 22011 chia hết cho 15.

Câu 6: (1,5 điểm)

Phân tích đa thức x3 – x2 – 14x + 24 thành nhân tử.

Tham khảo thêm:   Bí quyết chiến thắng chế độ Đua xe bắn súng trong Free Fire

Câu 7: (1,5 điểm)

Giải hệ phương trình:

Câu 8: (1,5 điểm)

Chứng minh D = n(n + 1)(n + 2)(n + 3) không phải là số chính phương với mọi n.

Câu 9: (1,5 điểm)

Cho hai số dương a và b. Chứng minh .

Câu 10: (1,5 điểm)

Tìm nghiệm tự nhiên của phương trình: 2x2 – xy – y2 – 8 = 0

Câu 11: (1,5 điểm)

Cho hình thang vuông ABCD (góc A = D = 90o), có DC = 2AB. Kẻ DH vuông góc với AC (H thuộc AC), gọi N là trung điểm của CH. Chứng minh BN vuông góc với DN.

Câu 12: (1,5 điểm).

Cho tam giác MNP cân tại M (góc M < 90o). Gọi D là giao điểm các đường phân giác trong của tam giác MNP. Biết DM = 2√5cm, DN = 3 cm. Tính độ dài đoạn MN.

Download tài liệu để xem thêm chi tiết.

Cảm ơn bạn đã theo dõi bài viết Đề thi học sinh giỏi lớp 9 THCS tỉnh Lâm Đồng môn Toán Năm học 2010 – 2011 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *