SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 9
|
Câu 1. (4,0 điểm)
Cho biểu thức:
1. Rút gọn biểu thức P
2. Tìm giá trị nhỏ nhất của biểu thức P
Câu 2. (4,0 điểm)
1. Trong mặt phẳng tọa độ (Oxy), cho parabol (P) có phương trình y = x2 và đường thẳng d có phương trình y = kx + 1 (k là tham số). Tìm k để đường thẳng d cắt parabol (P) tại hai điểm phân biệt M, N sao cho MN = 2√10.
2. Giải hệ phương trình:
(Với x, y, z là các số thực dương).
Câu 3. (3,0 điểm)
1. Giải phương trình nghiệm nguyên: x4 – 2y4 – x2y2 – 4x2 – 7y2 – 5 = 0.
2. Cho ba số a, b, c thỏa mãn: a + b + c = 1; a2 + b2 + c2 = 1; a3 + b3 + c3 = 1
Chứng minh rằng: a2013 + b2013 + c2013 = 1.
Câu 4. (6,0 điểm)
Cho đường tròn (O; R), đường thẳng d không đi qua O cắt đường tròn tại hai điểm A, B. Từ một điểm M tùy ý trên đường thẳng d và nằm ngoài đường tròn (O), vẽ hai tiếp tuyến MN, MP của đường tròn (O) (N, P là hai tiếp điểm).
1. Dựng điểm M trên đường thẳng d sao cho tứ giác MNOP là hình vuông.
2. Chứng minh rằng tâm của đường tròn đi qua ba điểm M, N, P luôn thuộc đường thẳng cố định khi M di động trên đường thẳng d.
Câu 5. (3,0 điểm)
1. Tìm hai số nguyên dương a và b thỏa mãn a2 + b2 = [a, b] + 7(a, b) (với [a,b] = BCNN(a,b), (a,b) = ƯCLN(a,b)).
2. Cho tam giác ABC thay đổi có AB = 6, AC = 2BC. Tìm giá trị lớn nhất của diện tích tam giác ABC.
Download tài liệu để xem chi tiết.
Cảm ơn bạn đã theo dõi bài viết Đề thi học sinh giỏi lớp 9 THCS tỉnh Bắc Ninh năm 2012 – 2013 Môn: Toán của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.