Bạn đang xem bài viết ✅ Các dạng bài tập về phương trình bậc nhất một ẩn Cách giải phương trình bậc nhất một ẩn ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Các dạng bài tập về phương trình bậc nhất một ẩn là tài liệu hữu ích gồm 16 trang, được biên soạn đầy đủ lý thuyết và các dạng bài tập về phương trình bậc nhất một ẩn có đáp án, lời giải chi tiết kèm theo bài tập về nhà.

Bài tập phương trình bậc nhất 1 ẩn giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8. Qua đó các em học sinh biết cách thực hành các dạng bài tập liên quan tới phương trình bậc nhất 1 ẩn. Đồng thời đây cũng là tư liệu giúp giáo viên tham khảo để dạy cho các em học sinh của mình. Ngoài ra các em tham khảo thêm: bài tập về các trường hợp đồng dạng của tam giác, bài tập về hằng đẳng thức. Vậy sau đây là toàn bộ kiến thức về Các dạng bài tập về phương trình bậc nhất một ẩn, mời các bạn cùng tải tại đây nhé.

Lý thuyết cần nhớ về phương trình bậc nhất một ẩn

1. Định nghĩa về phương trình bậc nhất một ẩn

Tham khảo thêm:   Mẫu số 02-1/TĐ-TNDN: Bảng phân bổ số thuế thu nhập doanh nghiệp phải nộp của cơ sở sản xuất thủy điện cho các địa phương Mẫu khai thuế đối với thủy điện

+ Phương trình có dạng ax + b = 0, với a và b là hai số đã cho và a khác 0 được gọi là phương trình bậc nhất một ẩn.

+ Phương trình bậc nhất một ẩn có 1 nghiệm duy nhất

2. Quy tắc biến đổi phương trình

+ Quy tắc chuyển vế: trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

+ Quy tắc nhân với một số: trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác 0.

3. Cách giải phương trình bậc nhất một ẩn

+ Bước 1:chuyển vế ax = -b

+ Bước 2: chia cả hai vế cho a

+ Bước 3: Kết luận nghiệm

Vấn đề I: Chứng minh một số là nghiệm của một phương trình

Phương pháp: Dùng mệnh đề sau:

x_{0} là nghiệm của phương trình A(x)=B(x) Leftrightarrow Aleft(x_{0}right)=Bleft(x_{0}right)

x_{0} không là nghiệm của phương trình A(x)=B(x) Leftrightarrow Aleft(x_{0}right) neq Bleft(x_{0}right)

Bài 1. Xét xem x_{0} có là nghiệm của phương trình hay không?

a) 3(2-x)+1=4-2 x ; x_{0}=-2

b) 5 x-2=3 x+1 ; quad x_{0}=frac{3}{2}

c) 3 x-5=5 x-1;

d) 2(x+4)=3-x ; quad x_{0}=-2

e) 7-3 x=x-5;

f) 2(x-1)+3 x=8 ; quad x_{0}=2

g) 5 x-(x-1)=7;

h) 3 x-2=2 x+1 ; quad x_{0}=3

Bài 2. Xét xem x_{0} có là nghiệm của phương trình hay không?

a) x^{2}-3 x+7=1+2 x ; quad x_{0}=2

b) x^{2}-3 x-10=0 ; quad x_{0}=-2

c) x^{2}-3 x+4=2(x-1) ; x_{0}=2

d) (x+1)(x-2)(x-5)=0 ; quad x_{0}=-1

e) 2 x^{2}+3 x+1=0 ; quad x_{0}=-1

f) 4 x^{2}-3 x=2 x-1 ; quad x_{0}=5

Bài 3. Tìm giá trị k sao cho phương trình có nghiệm x_{0}được chỉ ra:

a) 2 x+k=x-1 ; quad x_{0}=-2

b) (2 x+1)(9 x+2 k)-5(x+2)=40 ; x_{0}=2

c) 2(2 x+1)+18=3(x+2)(2 x+k) ; x_{0}=1

d) 5(k+3 x)(x+1)-4(1+2 x)=80 ; quad x_{0}=2

Vấn đề II. Số nghiệm của một phương trình

Phương pháp: Dùng mệnh đề sau:

– Phuơng trình A(x)=B(x) vô nghiệm Leftrightarrow A(x) neq B(x), forall x

– Phuơng trình A(x)=B(x) có vô số nghiệm Leftrightarrow A(x)=B(x), forall x

Bài 1. Chứng tỏ các phương trình sau vô nghiệm:

a) 2x+5=4(x-1)-2(x-3)

b) 2 x-3=2(x-3)

c) t-2 mid=-1

d) x^{2}-4 x+6=0

Bài 2. Chứng tỏ rằng các phương trình sau có vô số nghiệm:

Tham khảo thêm:   Thông tư liên tịch 05/2013/TTLT-BYT-BCT Hướng dẫn việc ghi nhãn, in cảnh báo sức khỏe trên bao bì thuốc lá

a) 4(x-2)-3 x=x-8

b) 4(x-3)+16=4(1+4 x)

c) 2(x-1)=2 x-2

d) k neq x

e) (x+2)^{2}=x^{2}+4 x+4

f) (3-x)^{2}=x^{2}-6 x=9

Bài 3. Chứng tỏ rằng các phương trình sau có nhiều hơn một nghiệm:

a) x^{2}-4=0

b) (x-1)(x-2)=0

c) (x-1)(2-x)(x+3)=0

d) x^{2}-3 x=0

Vấn đề III. Chứng minh hai phương trình tương đương

Để chứng minh hai phương trình tương đương, ta có thể sử dụng một trong các cách sau:

– Chúng minh hai phương trình có cùng tậ nghiệm.

– Sử dụng các phép biến đổi tương đương để biến đổi phương trình này thành phương trình kia.

– Hai quy tắc biến đổi phương trình:

– Quy tắc chuyển vế: Trong một phương trình, ta có thể chuyển một hạng tử tù vế này sang vế kia và đổi dấu hàng từ đó.

– Qui tắc nhân: Trong một phương trình, ta có thể nhân cả hai vế với cùng một số khác 0 .

Bài 1. Xét xem các phương trình sau có tương đương hay không?

a) 3 x=3 và x-1=0

b) x+3=0 và 3 x+9=0

c) x-2=0 và (x-2)(x+3)=0

d) 2 x-6=0 và x(x-3)=

Bài 2. Xét xem các phương trình sau có tương đương hay không?

a) x^{2}+2=0 và xleft(x^{2}+2right)=0

b) x+1=x và x^{2}+1=0

c) x+2=0 và frac{x}{x+2}=0

d) x^{2}+frac{1}{x}=x+frac{1}{x} và x^{2}+x=0

e) k-1=2 và (x+1)(x-3)=0

f) x+5=0 và (x+5)left(x^{2}+1right)=0

……………..

Mời các bạn tải File tài liệu để xem thêm nội dung tài liệu

Cảm ơn bạn đã theo dõi bài viết Các dạng bài tập về phương trình bậc nhất một ẩn Cách giải phương trình bậc nhất một ẩn của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

Tham khảo thêm:   KHTN Lớp 7 Bài 25: Hô hấp tế bào Giải sách Khoa học tự nhiên lớp 7 Chân trời sáng tạo trang 116

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *