Bạn đang xem bài viết ✅ Bộ đề thi học kì 2 môn Toán 10 năm 2022 – 2023 sách Kết nối tri thức với cuộc sống 3 Đề thi cuối kì 2 Toán 10 (Có đáp án) ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Đề thi cuối kì 2 Toán 10 Kết nối tri thức với cuộc sống năm 2022 – 2023 tuyển chọn 3 đề kiểm tra cuối kì 2 có đáp án chi tiết và bảng ma trận đề thi.

Đề thi học kì 2 Toán 10 Kết nối tri thức được biên soạn với cấu trúc đề rất đa dạng, bám sát nội dung chương trình học trong sách giáo khoa lớp 10. Hi vọng đây sẽ là tài liệu hữu ích cho quý thầy cô và các em ôn tập và củng cố kiến thức, chuẩn bị sẵn sàng cho học kì 2 lớp 10 sắp tới. Vậy sau đây là nội dung chi tiết TOP 3 đề kiểm tra học kì 2 Toán 10 Kết nối tri thức năm 2022 – 2023, mời các bạn cùng theo dõi tại đây. Ngoài ra các bạn xem thêm đề thi học kì 2 tiếng Anh 10 KNTT, đề thi học kì 2 Ngữ văn 10 KNTT.

Đề thi học kì 2 Toán 10

SỞ GD&ĐT ……..

TRƯỜNG THPT……………..

(Đề thi gồm có 03 trang)

ĐỀ KIỂM TRA HỌC KỲ II

NĂM HỌC 2022-2023

Môn: Toán 10

Thời gian làm bài: 90 phút, không kể thời gian giao đề

I. PHẦN TRẮC NGHIỆM (35 câu – 7,0 điểm).

Câu 1. Xét hai đại lượng x,y phụ thuộc vào nhau theo các hệ thức dưới đây. Trường hợp nào thì y là hàm số của x

A. y = 2x – 1.

B. left| y right| = {x^2}.

C. {y^2} = x.

D. {y^2} = {x^2} + 1.

Câu 2. Tập xác định D của hàm số fleft( x right) = sqrt {2 - x}  + frac{1}{{sqrt {x - 1} }}

A. D = left( {1;{rm{ }}2} right].

B. D = left( { - infty ;1} right) cup left[ {2; + infty } right).

C. D = left( { - infty ;2} right]backslash left{ 1 right}.

D. D = left( { - infty ;2} right].

Câu 3. Trục đối xứng của đồ thị hàm số y = a{x^2} + bx + c, (a ne 0) là đường thẳng nào dưới đây?

A. x =  - frac{b}{{2a}}.

B. x =  - frac{c}{{2a}}.

C. x =  - frac{Delta }{{4a}}.

D. x = frac{b}{{2a}}.

Câu 4. Biết đồ thị hàm số y = {x^2} + 2x +m đi qua điểm A( – 1;4). Tính m.

A. m = 6.

B. m = 7.

C. m = – 25.

D. m = 5.

Câu 5. Cho tam thức bậc hai fleft( x right) = a{x^2} + bx + c{rm{  }}left( {a ne 0} right). Điều kiện cần và đủ để fleft( x right) < 0,forall x in mathbb{R}

A. left{ begin{array}{l}a < 0\Delta  > 0end{array} right..

B. left{ begin{array}{l}a < 0\Delta  < 0end{array} right..

C. left{ begin{array}{l}a < 0\Delta  le 0end{array} right..

D. left{ begin{array}{l}a < 0\Delta  ge 0end{array} right..

Câu 6. Tập nghiệm S của bất phương trình - 2{x^2} + 5x + 7 le 0

A. S = left( { - infty ; - 1} right] cup left[ {frac{7}{2}; + infty } right).

B. S = left( { - 1;frac{7}{2}} right).

C. S = left[ { - 1;frac{7}{2}} right].

D. S = left( { - infty ; - 1} right) cup left( {frac{7}{2}; + infty } right).

Câu 7. Phương trình sqrt {{x^2} - x - 2}  = sqrt {2{x^2} + x - 1} có một nghiệm là

A. x = 3.

B. x = 2.

C. x = 1.

D. x = – 1.

Câu 8. Phương trình sqrt {{x^2} - 5x + 4}  =  - 2x + 2 có bao nhiêu nghiệm?

A. 0.

B. 2.

C. 3.

D. 1.

Câu 9. Trong mặt phẳng toạ độ, cho đường thẳng d có phương trình left{ begin{array}{l}x =  - 2 + 3t\y =  - 3 + 2tend{array} right.. Tọa độ một véctơ chỉ phương của đường thẳng d

A. overrightarrow {{n_3}}  = (3;2).

B. overrightarrow {{n_2}}  = (2; - 3).

C. overrightarrow {{n_4}}  = (2;3).

D. overrightarrow {{n_1}}  = ( - 2; - 3).

Câu 10.Phương trình nào là phương trình tổng quát của đường thẳng?

A. {y^2} = 3x.

B. frac{{{x^2}}}{9} + frac{{{y^2}}}{4} = 1.

C. left{ {begin{array}{*{20}{l}}{x = 3 - 2t}\{y = 1 + 3t{rm{ }}}end{array}} right..

D. 2x – y – 1 = 0.

Câu 11.Trong mặt phẳng toạ độ, cho tam giác ABC có A(1;1),B(0;2),C( – 2;6). Viết phương trình tổng quát của trung tuyến AM.

A. 3x – 2y – 1 = 0.

B. 3x – 2y + 11 = 0.

C. 3x + 2y – 5 = 0.

D. 3x + 2y + 5 = 0.

Tham khảo thêm:   Công nghệ 11 Bài 2: Xu hướng phát triển của chăn nuôi Giải Công nghệ Chăn nuôi 11 sách Cánh diều

Câu 12.Trong mặt phẳng toạ độ, cho đường thẳng d có phương trình 2x + y – 5 = 0. Đường thẳng d song song với đường thẳng có phương trình nào dưới đây?

A. x – 2y – 5 = 0.

B. – 2x – y + 5 = 0.

C. 2x + y + 5 = 0.

D. x – 2y + 5 = 0.

Câu 13.Trong mặt phẳng toạ độ, cho hai đường thẳng {d_1}:{a_1}x + {b_1}y + {c_1} = 0 và {d_2}:{a_2}x + {b_2}y + {c_2} = 0. Khi đó góc varphi giữa hai đường thẳng được xác định thông qua công thức

A. cos varphi  = frac{{{a_1}{a_2} + {b_1}{b_2}}}{{sqrt {a_1^2 + b_1^2} .sqrt {a_2^2 + b_2^2} }}.

B. cos varphi  = frac{{left| {{a_1}{a_2} + {b_1}{b_2}} right|}}{{sqrt {a_1^2 + b_1^2} .sqrt {a_2^2 + b_2^2} }}.

C. cos varphi  = frac{{{a_1}{a_2} + {b_1}{b_2}}}{{sqrt {a_1^2 + b_1^2}  + sqrt {a_2^2 + b_2^2} }}.

D. cos varphi  = frac{{left| {{a_1}{a_2} + {b_1}{b_2}} right|}}{{sqrt {a_1^2 + b_1^2}  + sqrt {a_2^2 + b_2^2} }}.

Câu 14.Tính khoảng cách từ điểm Mleft( {3; - 1} right) đến đường thẳng Delta :4x--3y + 3 = 0.

A. frac{{18}}{{25}}.

B. frac{{18}}{5}.

C. frac{{9sqrt {10} }}{5}.

C. frac{{9sqrt {10} }}{5}.

Câu 15.Trong mặt phẳng tọa độ, phương trình nào sau đây là phương trình của một đường tròn?

A. {x^2} + 2{y^2} - 4x - 8y + 1 = 0.

B. {x^2} + {y^2} - 4x + 6y - 12 = 0.

C. {x^2} - {y^2} - 2x - 8y + 20 = 0.

D. 4{x^2} + {y^2} - 10x - 6y - 2 = 0.

Câu 16.Tìm tọa độ tâm I và tính bán kính R của đường tròn (C):,,{left( {x + 2} right)^2} + {left( {y - 5} right)^2} = 9.

A. I( - 2;5),,,R = 81.

B. I(2; - 5),,,R = 9.

B. I(2; - 5),,,R = 9.

D. I( - 2;5),,,R = 3.

Câu 17.Trong mặt phẳng tọa độ, cho điểm Ileft( {1;1} right) và đường thẳng left( d right):3x + 4y - 2 = 0. Đường tròn tâm I và tiếp xúc với đường thẳng left( d right) có phương trình

A. {left( {x + 1} right)^2} + {left( {y + 1} right)^2} = 5.

B. {left( {x - 1} right)^2} + {left( {y - 1} right)^2} = 25.

C. {left( {x - 1} right)^2} + {left( {y - 1} right)^2} = 1.

D. {left( {x + 1} right)^2} + {left( {y + 1} right)^2} = 1.

Câu 18.Cho đường tròn left( C right):{x^2} + {y^2} - 2x - 4y - 4 = 0. Viết phương trình tiếp tuyến của đường tròn left( C right) tại điểm Aleft( {1;5} right).

A. y – 5 = 0.

B. y + 5 = 0.

C. x – 1 = 0.

D. x – y – 6 = 0.

Câu 19.Trong các phương trình sau, phương trình nào là phương trình chính tắc của hyperbol?

A. frac{{{x^{rm{2}}}}}{8} + frac{{{y^{rm{2}}}}}{4} = 1.

B. frac{{{x^{rm{2}}}}}{4} - frac{{{y^{rm{2}}}}}{8} =  - 1.

C. frac{{{x^{rm{2}}}}}{8} + frac{{{y^{rm{2}}}}}{4} =  - 1.

D. frac{{{x^{rm{2}}}}}{8} - frac{{{y^{rm{2}}}}}{4} = 1.

Câu 20.Phương trình chính tắc của left( E right) có độ dài trục lớn bằng 6, trục nhỏ bằng 4 là

A. frac{{{x^2}}}{9} - frac{{{y^2}}}{4} = 1.

B. frac{{{x^2}}}{{36}} + frac{{{y^2}}}{{16}} = 1.

C. frac{{{x^2}}}{9} + frac{{{y^2}}}{4} = 1.

D. frac{{{x^2}}}{{36}} - frac{{{y^2}}}{{16}} = 1.

Câu 21.Một tổ có 7 học sinh nữ và 5 học sinh nam. Có bao nhiêu cách chọn ngẫu nhiên một học sinh của tổ đó đi trực nhật?

A. 35.

B. 7.

C. 5.

D. 12.

Câu 22.Bạn An có 3 kiểu mặt đồng hồ đeo tay và 2 kiểu dây. Hỏi An có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

A. 5.

B. 3.

C. 12.

D. 6.

Câu 23.Từ các chữ số 1;2;3;5;6;9 lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số đôi một khác nhau?

A. 432.

B. 120.

C. 240.

D. 180.

Câu 24.Cho hai số tự nhiên k,,,n thỏa mãn 1 le k le n. Số chỉnh hợp chập k của n phần tử là

A. C_n^k = frac{{n!}}{{k!(n - k)!}}.

B. A_n^k = frac{{n!}}{{k!}}.

C. A_n^k = frac{{n!}}{{left( {n - k} right)!}}.

D. C_n^k = frac{{n!}}{{(n - k)!}}.

Câu 25.Một tổ học sinh có 7 nam và 3 nữ. Trong giờ học thể dục thầy giáo yêu cầu tổ xếp thành một hàng dọc. Hỏi có bao nhiêu cách sắp xếp?

A. 3!.

B. 3!.4!.

C. 10!.

D. 7!.

Câu 26.Số tập con có 9 phần tử của tập hợp có 15 phần tử là

A. frac{{15!}}{{9!}}.

B. 5004.

C. 5005.

D. A_{15}^9.

Câu 27.Tổ một của lớp 11/3 có 8 học sinh trong đó có bạn Nam. Hỏi có bao nhiêu cách chọn 4 học sinh trực lớp trong đó phải có Nam?

A. 35.

B. 56.

C. 70.

D. 210.

Câu 28.Tổ 1 lớp 11/3 có 6 học sinh nam và 5 học sinh nữ. Giáo viên chủ nhiệm cần chọn ra 4 học sinh của tổ 1 để lao động vệ sinh cùng cả trường. Hỏi có bao nhiêu cách chọn 4 học sinh trong đó có ít nhất một học sinh nam?

A. 600.

B. 25.

C. 325.

D. 30.

Câu 29.Trong khai triển nhị thức Newton của {left( {3x - 1} right)^4} có bao nhiêu số hạng?

A. 6.

B. 3.

C. 5.

D. 4.

Câu 30.Tung ngẫu nhiên 1 đồng xu cân đối và đồng chất 2 lần. Số phần tử của không gian mẫu nleft( Omega  right) bằng

Tham khảo thêm:   Báo cáo tổng kết năm học trường THCS Mẫu báo cáo tổng kết năm học 2022 - 2023

A.4.

B.8.

C.2.

D.36.

Câu 31.Gieo một con súc sắc cân đối và đồng chất. Xác suất để mặt có số chấm chẵn xuất hiện là

A. 1.

B. frac{1}{2}.

C. frac{1}{3}.

D. frac{1}{6}.

Câu 32.Một lớp có 20 học sinh nam và 18 học sinh nữ. Chọn ngẫu nhiên 1 học sinh. Tính xác suất chọn được 1 học sinh nữ.

A. frac{{10}}{{19}}.

B. frac{1}{{18}}.

C. frac{9}{{19}}.

D. frac{1}{{38}}.

Câu 33.Gieo 1 con súc sắc 2 lần. Xác suất của biến cố A sao cho tổng số chấm xuất hiện trong 2 lần gieo không nhỏ hơn 8 là

A. Pleft( A right) = frac{{13}}{{36}}.

B. Pleft( A right) = frac{5}{{18}}.

C. Pleft( A right) = frac{5}{{12}}.

D. Pleft( A right) = frac{2}{9}.

Câu 34.Trên kệ có 5 quyển sách toán, 3 quyển sách lý và 4 quyển sách hóa. Lấy ngẫu nhiên 3 quyển. Xác suất để 3 quyển lấy ra có ít nhất 1 quyển sách toán là

A. frac{{41}}{{55}}.

B. frac{7}{{44}}.

C. frac{{14}}{{55}}.

D. frac{{37}}{{44}}.

Câu 35.Có 2 cái hộp: Hộp thứ nhất có 5 bi xanh và 4 bi đỏ; hộp thứ hai có 4 bi xanh và 3 bi đỏ. Lấy ngẫu nhiên cùng một lúc mỗi hộp 2 bi. Tính xác suất để lấy được đúng 1 bi xanh.

A. frac{{20}}{{63}}.

B. frac{{41}}{{756}}.

C. frac{4}{{63}}.

D. frac{{11}}{{63}}.

II. TỰ LUẬN (04 câu – 3,0 điểm)

Câu 36. Tìm tất cả các giá trị của tham số m để hàm số y = sqrt {x - 2m + 1} xác định trên khoảng left( {1; + infty } right).

Câu 37. Trong mặt phẳng tọa độ, cho hai điểm A(4; – 1);B( – 2;5). Viết phương trình đường tròn đường kính AB.

Câu 38. Một nhóm có 9 học sinh gồm 6 học sinh nam (trong đó có Hiệp) và 3 học sinh nữ. Xếp 9 học sinh đó thành một hàng ngang. Tính xác suất để Hiệp không đứng cạnh bạn nữ nào.

Câu 39. Trong mặt phẳng tọa độ, cho hình chữ nhật ABCD biết BC có phương trình 6x – 7y + 32 = 0, hình chiếu vuông góc của A lên BD là  Kleft( {1;3} right) và đường thẳng BD đi qua điểm Hleft( { - 1;frac{5}{2}} right). Tìm tọa độ điểm A.

Đáp án đề thi học kì 2 Toán 10

1A 2A 3A 4D 5B 6A 7C
8B 9A 10D 11C 12C 13B 14A
15B 16D 17C 18A 19D 20C 21D
22D 23B 24C 25C 26C 27A 28C
29C 30A 31B 32C 33C 34D 35D

II. TỰ LUẬN (04 câu – 3,0 điểm)

Câu 36.

+ Hàm số xác định khi x - 2m + 1 ge 0 Leftrightarrow x ge 2m - 1.

Rightarrow tập xác định của hàm số D = left[ {2m - 1; + infty } right).

+ Hàm số xác định trên khoảng left( {1; + infty } right) khi left( {1; + infty } right) subset left[ {2m - 1; + infty } right) Leftrightarrow 2m - 1 le 1 Leftrightarrow m le 1.

Câu 37.

+ Gọi I là trung điểm AB Rightarrow Ileft( {1;2} right).

+ Đường tròn đường kính AB có tâm Ileft( {1;2} right), bán kính R = frac{{AB}}{2} = frac{{sqrt {{{left( { - 2 - 4} right)}^2} + {{left( {5 + 1} right)}^2}} }}{2} = 3sqrt 2 nên có phương trình:{left( {x - 1} right)^2} + {left( {y - 2} right)^2} = 18.

Câu 38.

Số phần tử của không gian mẫu là: nleft( Omega  right) = 9!.

Gọi A là biến cố: “Hiệp không đứng cạnh bạn nữ nào”.

Có 2 trường hợp:

* Trường hợp 1: Hiệp đứng đầu hoặc cuối hàng.

+ Xếp chỗ ngồi cho Hiệp, có 2 cách.

+ Chọn 3 chỗ từ 7 chỗ không kề với Hiệp và xếp cho 3 bạn nữ, có A_7^3 cách.

+ Xếp chỗ ngồi cho 5 bạn nam còn lại, có 5! cách.

Suy ra trường hợp 1 có: 2.A_7^3. 5! = 50400 cách xếp.

* Trường hợp 2: Hiệp không đứng đầu hoặc cuối hàng.

+ Xếp chỗ ngồi cho Hiệp, có 7 cách.

+ Chọn 3 chỗ từ 6 chỗ không kề với Hiệp và xếp cho 3 bạn nữ, có A_6^3 cách.

+ Xếp chỗ ngồi cho 5 bạn nam còn lại, có 5! cách.

Suy ra trường hợp 2 có 7.A_6^3.5! = 100800 cách xếp.

Khi đó, ta có số phần tử biến cố A: nleft( A right) = 50400 + 100800 = 151200.

Vậy xác suất cần tính:Pleft( A right) = frac{{nleft( A right)}}{{nleft( Omega  right)}} = frac{5}{{12}}.

Tham khảo thêm:   Công văn 8363/BTC-QLG Điều hành kinh doanh xăng dầu

Câu 39.

+ Đường thẳng BD  đi qua 2 điểm H,K nên nhận vectơ overrightarrow {HK}  = left( {2;frac{1}{2}} right) làm vectơ chỉ phương

Rightarrow BD có 1 vectơ pháp tuyến overrightarrow n  = left( {1; - 4} right) nên BD có phương trình x – 4y + 11 = 0.

+ B = BC cap BD Rightarrow tọa độ điểm B là nghiệm của hệ phương trình left{ begin{array}{l}6x - 7y + 32 = 0\x - 4y + 11 = 0end{array} right. Leftrightarrow left{ begin{array}{l}x =  - 3\y = 2end{array} right..

Suy ra Bleft( { - 3;2} right).

+ Đường thẳng AB vuông góc với BC nên AB có dạng 7x + 6y + c = 0.

AB đi qua điểm Bleft( { - 3;2} right) nên 7left( { - 3} right) + 6.2 + c = 0 Leftrightarrow c = 9.

Vậy AB có phương trình 7x + 6y + 9 = 0

+ Đường thẳng AK đi qua điểm K và vuông góc với BD nên có phương trình 4x + y – 7 = 0.

+ A = AB cap AK Rightarrow Aleft( {3; - 5} right).

Ma trận đề thi học kì 2 Toán 10

Câu hỏi trắc nghiệm: 35 câu (70%)

Câu hỏi tự luận: 4 câu (30%)

Gồm có 1/3 kiến thức trước KTGK 2 và 2/3 kiến thức sau KTGK 2

TT

Nội dung kiến thức

Đơn vị kiến thức

Mức độ nhận thức

Tổng

% tổng

điểm

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

Số CH

Thời gian (phút)

Số CH

Thời gian (phút)

Số CH

Thời gian (phút)

Số CH

Thời gian (phút)

Số CH

Thời gian (phút)

TN

TL

1

1. Hàm số, đồ thị và ứng dụng.

1.1. Hàm số bậc hai

1

1

1

2

2

0

3

30

1.2. Dấu của tam thức bậc hai

1.3. Phương trình quy về phương trình bậc hai

2

2. Phương pháp tọa độ trong mặt phẳng

2.1. Phương trình đường thẳng

1

1

1

2

1*

8

3

1

15

2.2. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách.

1

1

2.3. Đường tròn trong mặt phẳng tọa độ

1

1

1

2

1*

8

2

3

3. Đại số tổ hợp

3.1. Quy tắc đếm

2

2

1

2

1**

8

3

1

22

70

3.2. Hoán vị, chỉnh hợp và tổ hợp

3

3

2

4

5

3.3. Nhị thức Newton

1

1

1

2

2

4

4. Tính xác suất theo định nghĩa cổ điển

4.1. Biến cố và định nghĩa cổ điển của xác suất

2

2

1

2

1***

14

3

1

20

4.2. Thực hành tính xác suất theo định nghĩa cổ điển

1

2

1

Tổng

12

12

9

18

2

16

1

14

21

3

60

Tỉ lệ (%)

40

30

20

10

100

Tỉ lệ chung (%)

70

30

100

Lưu ý:

– Các câu hỏi ở cấp độ nhận biết và thông hiểu là các câu hỏi trắc nghiệm khách quan 4 lựa chọn, trong đó có duy nhất 1 lựa chọn đúng.

– Các câu hỏi ở cấp độ vận dụng và vận dụng cao là các câu hỏi tự luận.

– Số điểm tính cho 1 câu trắc nghiệm là 1/3điểm/câu; số điểm của câu tự luận được quy định trong hướng dẫn chấm nhưng phải tương ứng với tỉ lệ điểm được quy định trong ma trận.

– Trong nội dung kiến thức:

+ (1*) Chỉ được chọn một câu mức độ vận dụng ở một trong các nội dung 2.1,2.2 hoặc 2.3.

+ (1**) Chỉ được chọn một câu mức độ vận dụng ở một trong các nội dung 3.1, 3.2 hoặc 3.3

+ (1***)Chỉ được chọn một câu mức độ vận dụng cao ở một trong các nội dung 4.1 hoặc 4.2.

Cảm ơn bạn đã theo dõi bài viết Bộ đề thi học kì 2 môn Toán 10 năm 2022 – 2023 sách Kết nối tri thức với cuộc sống 3 Đề thi cuối kì 2 Toán 10 (Có đáp án) của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *