Bạn đang xem bài viết ✅ Bảng đạo hàm: Khái niệm và Công thức Công thức đạo hàm ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Đạo hàm là một trong những mảng kiến thức khó với nhiều bạn học sinh và thường xuyên xuất hiện trong bài thi tốt nghiệp THPT Quốc gia. Vậy công thức đạo hàm đầy đủ là như thế nào? Mời các bạn cùng Wikihoc.com tìm hiểu trong bài viết dưới đây nhé.

Bảng đạo hàm giúp bạn có thể tính toán hay lý giải các bài toán, việc nắm rõ các công thức mới giúp bạn có thể giải các bài tập Toán về đạo hàm một cách nhanh nhất, chính xác nhất.

Khái niệm đạo hàm

Trong giải tích toán học đạo hàm của một hàm số thực chất là sự mô tả sự biến thiên của hàm số tại một điểm nào đó. Cùng với tích phân (một phép toán ngược lại), đạo hàm là một trong hai khái niệm cơ bản trong giải tích.

Bảng đạo hàm của hàm số biến x

Bảng đạo hàm các hàm số cơ bản
(xα)’ = α.xα-1
(sin x)’ = cos x
(cos x)’ = – sin x

(tan x)^{prime}=frac{1}{cos ^{2} x}=1+tan ^{2} x

(cot x)’ = frac{-1}{sin^2 x} = -(1 + cot2 x)

(logα x)’ = frac{1}{x.lnα}

(ln x)’ = frac{1}{x}

(αx)’ = αx . lnα

(ex)’ = ex

Tham khảo thêm:   Mẫu số 01-TBH/CV số 1615 - tờ khai tham gia BHXH, BHYT, BHTN

Bảng đạo hàm của hàm số biến u = f(x)

Dưới đây là bảng đạo hàm các hàm số đa thức, hàm số lượng giác, hàm số mũ và hàm số logarit của một hàm số đa thức u = f(x).

Bảng đạo hàm các hàm số nâng cao
(uα)’ = α.u’.uα-1
(sin u)’ = u’.cos u
(cos u)’ = – u’.sin u
(tan u)’ = frac{u’}{cos^2 u} = u'(1 + tan2 u)
(cot u)’ = frac{-u}{sin^2 u} = -u'(1 + cot2 x)
(logα u)’ = frac{u}{u.lnα}
(ln u)’ = frac{u’}{u}
(αu)’ = u’.αu.lnα
(eu)’ = u’.eu

Các công thức đạo hàm cơ bản

1. Đạo hàm của một số hàm số thường gặp

Định lý 1: Hàm số y = {x^n}(n in mathbb{N}, n > 1) có đạo hàm với mọi x inmathbb{R} và: {left( {{x^n}} right)’} = n{x^{n – 1}}.

Nhận xét:

(C)’= 0 (với C là hằng số).

(x)’=1.

Định lý 2: Hàm số y= sqrt {x} có đạo hàm với mọi x dương và: left( {sqrt x } right)’ = frac{1}{{2sqrt x }}.

2. Đạo hàm của phép toán tổng, hiệu, tích, thương các hàm số

Định lý 3: Giả sử u = uleft( x right)v = vleft( x right) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:

{left( {u + v} right)’} = {u’} + {v’}; {left( {u – v} right)’} = {u’} – {v’}; {left( {u.v} right)’} = {u’}.v + u.{v’};

left ( frac{u}{v} right )’=frac{u’v-uv’}{v^2},(v(x) ne 0)

Mở rộng:

({u_1} + {u_2} + … + {u_n})’ = {u_1}’ + {u_2}’ + … + {u_n}’.

Hệ quả 1: Nếu k là một hằng số thì: (ku)’ = ku’.

Hệ quả 2: {left( {frac{1}{v}} right)’} = frac{{ – v’}}{{{v^2}}} , (v(x)ne 0)

(u.v.{rm{w}})’ = u’.v.{rm{w}} + u.v’.{rm{w}} + u.v.{rm{w}}’

3. Đạo hàm của hàm hợp

Định lý: Cho hàm số y = f(u) với u = u(x) thì ta có: y’_u=y’_u.u’_x.

Hệ quả:

({u^n}) = n.{u^{n – 1}}.u’,n in mathbb{N}^*. left( {sqrt u } right)’ = frac{{u’}}{{2sqrt u }}

Công thức đạo hàm lượng giác

Ngoài những công thức đạo hàm lượng giác nêu trên, ta có một số công thức bổ sung dưới đây:

[arcsin(x)]’ = frac{1}{ sqrt{1 – x^2}} [arccos(x)]’ = frac{-1}{ sqrt{1 – x^2}} [arctan(x)]’ = frac{1}{x^2 + 1}

Công thức đạo hàm cấp 2

Hàm số y = f(x) có đạo hàm tại x ∈ (a; b).

Khi đó y’ = f'(x) xác định một hàm sô trên (a;b).

Nếu hàm số y’ = f'(x) có đạo hàm tại x thì ta gọi đạo hàm của y’ là đạo hàm cấp hai của hàm số y = f(x) tại x.

Tham khảo thêm:   Văn mẫu lớp 11: Dàn ý phân tích nhân vật cô Hiền trong Một người Hà Nội Phân tích nhân vật cô Hiền

Kí hiệu: y” hoặc f”(x).

Ý nghĩa cơ học: 

Đạo hàm cấp hai f”(t) là gia tốc tức thời của chuyển động S = f(t) tại thời điểm t.

Công thức đạo hàm cấp cao

Cho hàm số y = f(x) có đạo hàm cấp n-1 kí hiệu f (n-1) (x) (n ∈ N, n ≥ 4).

Nếu f (n-1) (x) có đạo hàm thì đạo hàm của nó được gọi là đạo hàm câp n của y = f(x), y (n) hoặc f (n) (x).

f (n) (x) = [f (n-1) (x)]’

Công thức đạo hàm cấp cao:

(x m)(n) = m(m – 1)(m – 2)…(m – n + 1).xm – n  (nếu m ≥ n)

(x m)(n) = 0 (nếu m ≤ n)

Cảm ơn bạn đã theo dõi bài viết Bảng đạo hàm: Khái niệm và Công thức Công thức đạo hàm của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *