Bạn đang xem bài viết ✅ Đề thi thử Đại học lần 1 trường THPT chuyên Hùng Vương tỉnh Gia Lai năm 2014 Môn: Toán (A – A1) – Có đáp án ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

TRƯỜNG THPT CHUYÊN HÙNG VƯƠNG

NĂM HỌC: 2013 – 2014

ĐỀ THI THỬ ĐẠI HỌC (LẦN 1)
Môn: TOÁN; Khối A và khối A1
Thời gian: 180 phút (không kể thời gian phát đề)


I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu 1 ( 2,0 điểm). Cho hàm số Đề thi thử Đại học lần 1 năm 2014 có đồ thị (C).

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C)

b) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt hai tiệm cận của (C) tại A, B sao cho AB ngắn nhất.

Câu 2 (1,0 điểm). Giải phương trình:

Đề thi thử Đại học lần 1 năm 2014

Câu 3 (1,0 điểm). Giải bất phương trình:

Đề thi thử Đại học lần 1 năm 2014

Câu 4 (1,0 điểm). Giải hệ phương trình:

Đề thi thử Đại học lần 1 năm 2014

Câu 5 (1,0 điểm).

Cho hình chóp S.ABC, có đáy ABC là tam giác vuông tại A, AB = a, góc ACB = 30o. Gọi I là trung điểm BC, hình chiếu vuông góc của điểm S lên mặt đáy (ABC) là điểm H thỏa mãn: IA = 2IH. Góc giữa SC và mặt đáy (ABC) bằng 60o. Tính thể tích khối chóp S.ABC và tính khoảng cách từ trung điểm K của SB tới mặt phẳng (SAH) theo a?

Câu 6 (1,0 điểm).

Tham khảo thêm:   Gợi ý câu hỏi tự luận Mô đun 3 môn Hóa học THPT Đáp án tự luận môn Hóa học THPT

Cho ba số thực a, b, c thỏa mãn Đề thi thử Đại học lần 1 năm 2014 và 2a + 3b + 4c ≤ 7. Tìm giá trị nhỏ nhất của biểu thức:

Đề thi thử Đại học lần 1 năm 2014

II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)

A. Theo chương trình chuẩn

Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có trực tâm H(1; 1), điểm M( 1; 2)là trung điểm AC và phương trình cạnh BC là: 2x – y + 1 = 0. Xác định tọa độ các đỉnh A, B, C của tam giác ABC?

Câu 8.a (1,0 điểm). Cắt hình nón (N) đỉnh S cho trước bởi mặt phẳng qua trục của nó, ta được một tam giác vuông cân có cạnh huyền bằng a√2. Tính diện tích xung quanh của hình nón (N). Tính thể tích khối cầu nội tiếp hình nón (N)

Câu 9.a (1,0 điểm). Cho hai đường thẳng d1 và d2 cắt nhau tại điểm O. Trên d1 lấy 6 điểm phân biệt khác điểm O. Trên d2 lấy n điểm phân biệt khác điểm O. Tìm n để số tam giác tạo thành từ n + 7 điểm trên (kể cả điểm O) là 336

B. Theo chương trình nâng cao

Câu 7.b (1,0 điểm). Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): x + y – 2 = 0 cắt đường tròn (C) có phương trình: x2 + y2 – 4x – 4y + 4 = 0 tại hai điểm A và B. Tìm điểm C trên đường tròn (C) sao cho diện tích tam giác ABC lớn nhất?

Câu 8.b (1,0 điểm). Cho hình trụ (T) có bán kính đáy bằng a. Một mặt phẳng (α) song song và cách trục OO’ của hình trụ bằng a/2 cắt hình trụ (T) theo thiết diện là hình vuông. Tính diện tích xung quanh của hình trụ (T) và tính thể tích khối cầu ngoại tiếp hình trụ (T)

Tham khảo thêm:   Giáo án Toán 8 sách Chân trời sáng tạo (Học kì 1) Kế hoạch bài dạy Toán 8

Câu 9.b (1,0 điểm). Một hộp đựng 4 viên bi xanh, 5 viên bi đỏ, 3 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Tính xác suất để 3 viên bi được chọn, trong đó có đúng một viên bi xanh?

Download tài liệu để xem chi tiết.

Cảm ơn bạn đã theo dõi bài viết Đề thi thử Đại học lần 1 trường THPT chuyên Hùng Vương tỉnh Gia Lai năm 2014 Môn: Toán (A – A1) – Có đáp án của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *