Bạn đang xem bài viết ✅ Toán 11 Bài 1: Dãy số Giải Toán 11 Cánh diều trang 43, 44, 45, 46, 47, 48 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Toán lớp 11 tập 1 trang 43, 44, 45, 46, 47, 48 Cánh diều là tài liệu vô cùng hữu ích mà Wikihoc.com muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 11 tham khảo.

Giải Toán 11 Cánh diều Bài 1 Dãy số được biên soạn đầy đủ, chi tiết trả lời các câu hỏi phần bài tập cuối bài trang 47, 48. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết Toán 11 tập 1 Bài 1 Dãy số Cánh diều, mời các bạn cùng theo dõi tại đây.

Toán lớp 11 tập 1 trang 47, 48 – Cánh diều

Bài 1 trang 47

Viết năm số hạng đầu của mỗi dãy số có số hạng tổng quát u_{n} cho bởi công thức sau:

a) u_{n}=2n^{2}+1;

b) u_{n}=frac{(-1)^{n}}{2n-1};

c) u_{n}=frac{2^{n}}{n};

d) u_{n}=(1+frac{1}{n})^{n}.

Gợi ý đáp án

a) 3, 9, 19, 33, 51;

b) -1; frac{1}{3}; -frac{1}{5}; frac{1}{7}; -frac{1}{9};

c) 2;2;frac{8}{3}; 4; frac{32}{5};

d) 2;frac{9}{4}; frac{64}{27}; frac{625}{256}; (frac{6}{5})^{5}.

Bài 2 trang 47

a) Gọi u_{n} là số chấm ở hàng thứ n trong Hình 1. Dự đoán công thức của số hạng tổng quát cho dãy số (u_{n}).

Tham khảo thêm:   Top trang đọc truyện tranh manga online miễn phí hay nhất

b) Gọi v_{n} là tổng diện tích của các hình tô màu ở hàng thứ n trong Hình 2 (mỗi ô vuông nhỏ là một đơn vị diện tích). Dự đoán công thức của số hạng tổng quát cho dãy số (v_{n}).

Gợi ý đáp án

a) Số hạng tổng quát u_{n}=n.

b) Ta có: v_{1}=1^{3}, v_{2}=2^{3}, v_{3}=3^{3}, v_{4}=4^{3}

Do đó: Số hạng tổng quát v_{n}=n^{3}.

Bài 3 trang 48

Xét tính tăng, giảm của mỗi dãy số (u_{n}), biết:

a) u_{n}=frac{n-3}{n+2};

b) u_{n}=frac{3^{n}}{2^{n}.n!};

c) u_{n}=(-1)^{n}.(2^{n}+1).

Gợi ý đáp án

a) Ta có: u_{n+1}=frac{n-2}{n+3} với mọi nin mathbb{N}^{*}.

Có: u_{n+1}-u_{n}= frac{5}{n^{2}+5n+6}> 0, nin mathbb{N}^{*}.

Vậy dãy số u_{n} là dãy số tăng.

b) Ta có: u_{n+1}-u_{n}< 0, với mọi nin mathbb{N}^{*}.

Vậy dãy số u_{n} là dãy số giảm.

c) Ta thử số n = 1; 2; 3; … được dãy số u_{n}= -3; 5; -9; 17; …

Vậy dãy số u_{n} là dãy số không tăng không giảm.

Bài 4 trang 48

Trong các dãy số (u_{n}) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) u_{n}= n^{2}+2;

b) u_{n}=-2n+1;

c) u_{n}=frac{1}{n^{2}+n}.

Gợi ý đáp án

a) Vì n^{2}+2geq 3 nên dãy số u_{n} là dãy số bị chặn dưới;

b) Vì -2n+1leq -1 nên dãy số u_{n} là dãy số bị chặn trên;

c) Vì 0< frac{1}{n^{2}+n}leq frac{1}{2} nên dãy số u_{n} là dãy số bị chặn.

Bài 5 trang 48

Cho dãy số thực dương (u_{n}). Chứng minh rằng dãy số (u_{n}) là dãy số tăng khi và chỉ khi frac{u_{n}+1}{u_{n}}> 1 với mọi nin mathbb{N}^{*}.

Gợi ý đáp án

u_{n}> 0 nên nhân u_{n} vào hai vế của bất đẳng thức frac{u_{n}+1}{u_{n}}> 1, ta có: u_{n+1}> u_{n} với mọi nin mathbb{N}^{*}.

Suy ra: Dãy số (u_{n}) là dãy số tăng khi và chỉ khi frac{u_{n}+1}{u_{n}}> 1 với mọi nin mathbb{N}^{*}.

Bài 6 trang 48

Chị Mai gửi tiền tiết kiệm vào ngân hàng theo thể thức lãi kép như sau: Lần đầu chị gửi 100 triệu đồng. Sau đó, cứ hết 1 tháng chị lại gửi thêm vào ngân hàng 6 triệu đồng. Biết lãi suất của ngân hàng là 0,5% một tháng. Gọi P_{n} (triệu đồng) là số tiền chị có trong ngân hàng sau n tháng.

Tham khảo thêm:   Tin học lớp 4 Bài 6: Tạo chương trình có nhân vật thay đổi kích thước, màu sắc Giải Tin học lớp 4 Cánh diều trang 68, 69

a) Tính số tiền chị có trong ngân hàng sau 1 tháng.

b) Tính số tiền chị có trong ngân hàng sau 3 tháng.

c) Dự đoán công thức của P_{n} tính theo n.

Gợi ý đáp án

a) Sau 1 tháng, chị Mai có: 100(1+0,005) (triệu đồng)

b) Sau 3 tháng, chị Mai có: 100(1+0,005)^{3}+6(1+0,005)^{2} (triệu đồng)

c) Dự đoán công thức: P_{n}=100(1+0,005)^{n}+6(1+0,005)^{n-1} (triệu đồng).

Cảm ơn bạn đã theo dõi bài viết Toán 11 Bài 1: Dãy số Giải Toán 11 Cánh diều trang 43, 44, 45, 46, 47, 48 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *