Bạn đang xem bài viết ✅ Công thức hạ bậc lượng giác Công thức hạ bậc ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Công thức hạ bậc là một trong những công thức lượng giác quan trọng mà các bạn học sinh lớp 10, lớp 11 cần phải ghi nhớ. Tuy nhiên có rất nhiều bạn học sinh không học thuộc được công thức hạ bậc. Chính vì vậy trong bài viết hôm nay Wikihoc.com trân trọng giới thiệu toàn bộ kiến thức về công thức hạ bậc có ví dụ minh họa kèm theo bài tập vận dụng.

Công thức hạ bậc lượng giác là công thức tìm cách để đưa những hàm số lượng giác có bậc cao về bậc thấp hơn nó. Ngoài một số phương pháp học cơ bản các bạn có thể học thuộc công thức hạ bậc bằng thơ vui. Cách học thuộc công thức hạ bậc này sẽ giúp cho các em học sinh dễ dàng ghi nhớ được công thức lượng giác nhanh chóng, từ đó biết cách giải các bài tập toán liên quan đến công thức hạ bậc.

I. Lượng giác là gì?

Lượng giác tên tiếng Anh là Trigonometry là một nhánh nhỏ trong toán học, sử dụng để tìm hiểu về hình tam giác và sự liên kết giữa cạnh của hình tam giác với góc độ của nó. Lượng giác giúp chỉ ra hàm số lượng giác, mà hàm số lượng giác diễn tả những mối liên kết và có thể áp dụng được để học các hiện tượng có chu kỳ như song âm.

Tham khảo thêm:   Lịch sử 10 Bài 16: Văn minh Chăm–pa Soạn Sử 10 trang 95 sách Chân trời sáng tạo

II. Hạ bậc lượng giác là gì?

Hạ bậc lượng giác là tìm cách để đưa những hàm số lượng giác có bậc cao về bậc thấp hơn nó.

III. Công thức hạ bậc

Công thức hạ bậc bậc hai

cos a =  pm sqrt {frac{{1 + cos 2a}}{2}}

sin a =  pm sqrt {frac{{1 - cos 2a}}{2}}

tan a =  pm sqrt {frac{{1 - cos 2a}}{{1 + cos 2a}}}

Công thức hạ bậc bậc 3

sin a = sqrt[3]{{frac{{3sin a - sin 3a}}{4}}}

sin a = sqrt[3]{{frac{{3sin a - sin 3a}}{4}}}

tan a = sqrt[3]{{frac{{3sin a - sin 3a}}{{3cos a + cos 3a}}}}

Công thức hạ bậc bậc bốn

sin a =  pm sqrt[4]{{frac{{cos 4a - 4cos s2a + dfrac{6}{2}}}{8}}}

cos a =  pm sqrt[4]{{frac{{cos 4a + 4cos s2a + dfrac{6}{2}}}{8}}}

Công thức hạ bậc bậc 5

sin a = sqrt[5]{{frac{{sin 5a - 5sin 3a + 10sin a}}{{16}}}}

cos a = sqrt[5]{{frac{{cos 5a + 5cos 3a + 10cos a}}{{16}}}}

IV. Ví dụ minh họa

Ví dụ : Giải phương trình lượng giác: sin 2 x = cos 2 x + cos 2 3x

Lời giải 

Biến đổi phương trình về dạng:

frac{{1 - cos 2x}}{2} = frac{{1 + cos 4x}}{2} + {cos ^2}3x

<=> 2cos23x + (cos4x + cos2x) = 0

<=> 2cos23x + 2cos3x . cosx = 0

<=> (cos3x + cosx) . cos3x = 0

<=> 2cos2x . cosx . cos3x = 0

Leftrightarrow left[ {begin{array}{*{20}{c}}
  {cos 2x = 0} \ 
  {cos x = 0} \ 
  {cos 3x = 0} 
end{array}} right. Rightarrow left[ {begin{array}{*{20}{c}}
  {2x = dfrac{pi }{2} + kpi } \ 
  {x = dfrac{pi }{2} + kpi } \ 
  {3x = dfrac{pi }{2} + kpi } 
end{array}} right. Rightarrow left[ {begin{array}{*{20}{c}}
  {x = dfrac{pi }{4} + dfrac{{kpi }}{2}} \ 
  {x = dfrac{pi }{2} + kpi } \ 
  {x = dfrac{pi }{6} + dfrac{{kpi }}{3}} 
end{array}} right.left( {k in mathbb{Z}} right)

V. Cách học công thức hạ bậc lượng giác bằng thơ

Một số đoạn thơ vui mà bạn có thể học để ghi nhớ các công thức hạ bậc lượng giác:

Sao đi học (sin = đối/ huyền)

Cứ khóc hoài (cos = kề/ huyền)

Thôi đừng khóc (tan = đối/ kề)

Có kẹo đây (cot = kề/ đối)

Tìm sin lấy đối chia huyền

Cosin thì lấy cạnh kề, huyền chia nhau.

Còn tang ta tính như sau:

Đối trên, kề dưới chia nhau là ra liền.

Cotang cũng rất dễ ăn tiền,

Kề trên, đối dưới chia liền thể nào cũng ra

VI. Bài tập hạ bậc lượng giác

Bài tập 1. Giải phương trình lượng giác sau: sin3a + cos3a = 0

Lời giải

(1 – cos3a)/2 + cos3a = 0

⇔1 – cos3a + 2cos3a = 0

⇔1 + cos3a = 0

⇔ cos3a = -1

⇔3a = π + k2π

Vậy nghiệm của phương trình lượng giác này là 3a = π + k2π

Bài tập 2: Hãy giải phương trình sin2x = cos2x + cos25x

Tham khảo thêm:   Rules of Survival: 4 thói quen quyết định thắng thua trong game

Lời giải

Biến đổi phương trình về dạng:

(1 – cos2x)/2 = (1 + cos4x)/2 + cos25x

⇔ 2cos25x + (cos4x + cos2x) = 0

⇔ 2cos25x + 2cos3x.cos5x = 0

⇔ (cos3x + cosx) cos5x = 0

⇔ 2cos2x.cosx.cos5x = 0

Bài tập 3: giải phương trình lượng giác sau:

begin{aligned}
&sin 2 a+cos 2 a=0 \
&Leftrightarrow=>(1-cos 2 a) / 2+cos 2 a=0 \
&Leftrightarrow 1-cos 2 a+2 cos 2 a=0 \
&Leftrightarrow 1+cos 2 a=0 \
&Leftrightarrow cos 2 a=-1 \
&Leftrightarrow 2 a=pi+k 2 pi \
&Leftrightarrow a=pi / 2+k pi
end{aligned}

Vậy nghiệm của phương trình lượng giác là mathrm{a}=pi / 2+mathrm{k} pi

Bài tập 4:

Rút gọn biểu thức displaystyle A = {{{mathop{rm s}nolimits} {rm{inx}} + sin 3{rm{x}} + sin 5{rm{x}}} over {{mathop{rm cosx}nolimits} + cos 3x + cos5x}}.

Áp dụng các công thức:

begin{array}{l}
+ );;sin a + sin b = 2sin dfrac{{a + b}}{2}cos dfrac{{a - b}}{2}.\
+ );;cos a + cos b = 2cos dfrac{{a + b}}{2}cos dfrac{{a - b}}{2}.\
+ );;tan a = dfrac{{sin a}}{{cos a}}.
end{array}

Trả lời

Ta có:

sin x + sin 3x + sin 5x

= (sin 5x + sin x) + sin 3x

= 2sin {{5x + x} over 2}.cos {{5x - x} over 2} + sin 3x

= 2sin 3x cos 2x + sin 3x

= sin 3x (2cos 2x + 1) , , , , (1)

cos x + cos3x + cos5x

= (cos 5x + cos x )+cos3x

= 2cos dfrac{{5x + x}}{2}cos dfrac{{5x - x}}{2}+ cos3x

= 2cos3x . cos2x + cos3x

= cos3x (2cos2x + 1) , , , (2)

Từ (1) và (2) ta có:

A = dfrac{{sin 3xleft( {2cos 2x + 1} right)}}{{cos 3xleft( {2cos 2x + 1} right)}} = {{sin 3x} over {cos 3x}} = tan 3x

Vậy A= tan 3x.

Cảm ơn bạn đã theo dõi bài viết Công thức hạ bậc lượng giác Công thức hạ bậc của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *