Bạn đang xem bài viết ✅ Đề thi học sinh giỏi Quốc gia môn Tin học lớp 12 năm 2011 – Có đáp án (Ngày thi thứ nhất) Đề thi học sinh giỏi Quốc gia ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.
BỘ GIÁO DỤC VÀ ĐÀO TẠO

(Đề thi chính thức)

KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA
LỚP 12 THPT NĂM 2011
Môn: TIN HỌC

Thời gian: 180 phút (không kể thời gian giao đề)
Ngày thi thứ nhất: 11/01/2011

Dấu * được thay thế bởi PAS hoặc CPP của ngôn ngữ lập trình được sử dụng tương ứng là Pascal hoặc C++.

Hãy lập trình giải các bài toán sau:

Bài 1. (6 điểm) Phần thưởng

Tuấn là người thắng cuộc trong một cuộc thi “Tìm hiểu kiến thức vũ trụ” và được nhận các phần thưởng do công ty XYZ tài trợ. Các phần thưởng được bố trí trên một bảng vuông kích thước n × n có dạng một lưới ô vuông kích thước đơn vị. Các dòng của bảng được đánh số từ 1 đến n, từ trên xuống dưới và các cột của bảng được đánh số từ 1 đến n, từ trái qua phải. Ô nằm trên giao của dòng i và cột j được gọi là ô (i, j) và trên ô đó chứa một món quà có giá trị là aij (1 ≤ i, j ≤ n).

Để nhận phần thưởng, Tuấn được phép chọn một hình vuông kích thước k × k chiếm trọn một số ô của bảng và nhận tất cả các phần quà trong các ô nằm trong hình vuông đó.

Yêu cầu: Hãy xác định tổng giá trị lớn nhất của các món quà mà Tuấn có thể nhận được.

Dữ liệu: Vào từ file văn bản BONUS.INP
– Dòng thứ nhất chứa hai số nguyên dương n, k (n ≤ 1000; n/3≤ k ≤ n ).
– Dòng thứ i trong số n dòng tiếp theo chứa n số nguyên dương, số thứ j là aij (aij ≤ 1000).

Các số trên cùng một dòng được ghi cách nhau ít nhất một dấu cách.

Kết quả: Ghi ra file văn bản BONUS.OUT một số nguyên duy nhất là tổng giá trị lớn nhất của các món quà mà Tuấn có thể nhận được.

Bài 2. (7 điểm) Hình chữ nhật bốn màu

Trên mặt phẳng toạ độ Đề các vuông góc Oxy cho n điểm phân biệt Ai (xi, yi), i = 1, 2, …, n. Mỗi điểm Ai được tô bởi màu ci ∈ {1, 2, 3, 4}. Ta gọi hình chữ nhật bốn màu là hình chữ nhật thoả mãn hai điều kiện sau:

– Bốn đỉnh của hình chữ nhật là bốn điểm trong n điểm đã cho và được tô bởi bốn màu khác nhau;

– Các cạnh của hình chữ nhật song song với một trong hai trục toạ độ.

Yêu cầu: Cho biết toạ độ và màu của n điểm, hãy đếm số lượng hình chữ nhật bốn màu.

Dữ liệu: Vào từ file văn bản COLOREC.INP:

– Dòng đầu tiên chứa số nguyên dương n (4 ≤ n ≤ 105) là số lượng điểm trên mặt phẳng.

– Dòng thứ i trong n dòng tiếp theo chứa ba số nguyên xi, yi, ci (|xi|, |yi| ≤ 200) là thông tin về toạ độ và màu của điểm thứ i, i = 1, 2,…, n.

Các số trên cùng một dòng được ghi cách nhau ít nhất một dấu cách.

Kết quả: Ghi ra trên một dòng của file văn bản COLOREC.OUT số lượng hình chữ nhật đếm được.

Bài 3. (7 điểm) Hàng cây

Một trang trại lớn có n cây cảnh với độ cao khác nhau từng đôi. Các cây này được xếp theo một hàng dọc. Ông chủ trang trại là người có đầu óc thẩm mỹ nên hàng cây được bố trí có tính chất không đơn điệu sau đây: “Đi từ đầu hàng đến cuối hàng không có 3 cây (không nhất thiết phải liêntiếp) có chiều cao giảm dần”.

Một hôm ông chủ mua thêm một cây cảnh mới có chiều cao lớn hơn chiều cao của tất cả các cây đã có. Ông ta muốn xếp cây cảnh mới vào một trong n +1 vị trí có thể của hàng cây đang có (vào vị trí đầu hàng, vị trí sau cây thứ nhất của hàng, vị trí sau cây thứ hai của hàng, …, vị trí sau cây thứ n của hàng) sao cho hàng cây thu được vẫn thỏa mãn yêu cầu về tính không đơn điệu nêu trên

Yêu cầu:

– Hãy cho biết có bao nhiêu cách xếp cây cảnh cao nhất mới mua vào hàng cây sao cho vẫn đảm bảo điều kiện về tính không đơn điệu.

– Giả sử mỗi ngày ông chủ muốn xếp n+1 cây đã có thành hàng cây đảm bảo yêu cầu về tính không đơn điệu và hai hàng cây của hai ngày khác nhau là không trùng nhau, hãy giúp ông chủ tính xem việc đó có thể diễn ra nhiều nhất là bao nhiêu ngày.

Dữ liệu: Vào từ file văn bản TREELINE.INP

– Dòng thứ nhất chứa hai số nguyên dương n và h tương ứng là số lượng cây và chiều cao của cây cao nhất. Biết rằng n ≤ 105, h ≤ 106.

– Dòng thứ hai chứa n số nguyên dương (mỗi số đều nhỏ hơn h) tương ứng là dãy chiều cao của n cây được xếp ban đầu.

Các số trên cùng một dòng được ghi cách nhau ít nhất một dấu cách.

Kết quả: Ghi ra file văn bản TREELINE.OUT

– Dòng thứ nhất ghi một số nguyên là số cách xếp cây cao nhất vào hàng cây.

– Dòng thứ hai ghi một số nguyên là phần dư trong phép chia số ngày lớn nhất tìm được cho 109

Download tài liệu để xem thêm chi tiết

Cảm ơn bạn đã theo dõi bài viết Đề thi học sinh giỏi Quốc gia môn Tin học lớp 12 năm 2011 – Có đáp án (Ngày thi thứ nhất) Đề thi học sinh giỏi Quốc gia của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

Tham khảo thêm:   Thông tư số 06/2014/TT-BTTTT Ban hành Quy chuẩn kỹ thuật quốc gia

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *