SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
KỲ THI TUYỂN SINH LỚP 10 CHUYÊN
|
Bài 1 (2,5 điểm).
Cho phương trình: x2 – mx + m – 1 = 0 (1)
1) Giải phương trình (1) với m = 3.
2) Tìm m để phương trình (1) có hai nghiệm phân biệt.
3) Tìm m để phương trình (1) có hai nghiệm x1, x2 và biểu thức P = x12 + x22 đạt giá trị nhỏ nhất.
Bài 2 (2,0 điểm).
Cho hàm số: y = (2m + 1)x – (m – 3).
1) Tìm m để đồ thị hàm số đã cho đi qua điểm A(-2; 3).
2) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m.
Bài 3 (1,5 điểm).
Cho a = √17 – 1. Tính giá trị của biểu thức: P = (a5 + 2a4 – 17a3 – a2 + 18a – 17)2012
Bài 4 (1,0 điểm).
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1.
Tìm giá trị nhỏ nhất của biểu thức: .
Bài 5 (3,0 điểm).
Cho ba điểm phân biệt A, B, C thẳng hàng theo thứ tự đó. Gọi là đường tròn tâm O bất kỳ đi qua B và C (BC không là đường kính của ). Kẻ từ A các tiếp tuyến AE, AF đến (E, F là các tiếp điểm). Gọi I và K lần lượt là trung điểm của BC và EF; đường thẳng FI cắt lại tại D. Chứng minh rằng:
1) Bốn điểm A, E, O, I cùng nằm trên một đường tròn, chỉ rõ đường kính của đường tròn đó.
2) ED song song với AC.
3) Nếu thay đổi nhưng luôn đi qua B và C thì tâm đường tròn ngoại tiếp tam giác OIK luôn thuộc một đường thẳng cố định.
Download tài liệu để xem thêm chi tiết.
Cảm ơn bạn đã theo dõi bài viết Đề thi tuyển sinh lớp 10 THPT Chuyên tỉnh Vĩnh Phúc năm 2012 – 2013 môn Toán Dành cho tất cả các thí sinh của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.