SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN LAM SƠN
|
Câu 1 (2.0 điểm):
Cho biểu thức , (Với a > 0 , a # 1)
1. Chứng minh rằng:
2. Tìm giá trị của a để P = a
Câu 2 (2,0 điểm):
Trong mặt phẳng toạ độ Oxy, cho Parabol (P): y = x2 và đường thẳng (d): y = 2x + 3
1. Chứng minh rằng (d) và (P) có hai điểm chung phân biệt
2. Gọi A và B là các điểm chung của (d) và (P). Tính diện tích tam giác OAB (O là gốc toạ độ)
Câu 3 (2.0 điểm):
Cho phương trình: x2 + 2mx + m2 – 2m + 4 = 0
1. Giải phương trình khi m = 4
2. Tìm m để phương trình có hai nghiệm phân biệt
Câu 4 (3.0 điểm):
Cho đường tròn (O) có đờng kính AB cố định, M là một điểm thuộc (O) (M khác A và B). Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C. CD là đường kính của (I). Chứng minh rằng:
1. Ba điểm O, M, D thẳng hàng
2. Tam giác COD là tam giác cân
3. Đường thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đường tròn (O)
Câu 5 (1.0 điểm):
Cho a,b,c là các số dương không âm thoả mãn: a2 + b2 + c2 = 3
Chứng minh rằng:
Download tài liệu để xem thêm chi tiết.
Cảm ơn bạn đã theo dõi bài viết Đề thi tuyển sinh lớp 10 THPT chuyên Lam Sơn tỉnh Thanh Hóa năm 2012 – 2013 môn Toán Đề thi môn Toán của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.