Bạn đang xem bài viết ✅ Toán 10 Bài 19: Phương trình đường thẳng Giải SGK Toán 10 trang 34 – Tập 2 sách Kết nối tri thức với cuộc sống ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán lớp 10 trang 34 tập 2 Kết nối tri thức với cuộc sống giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi bài tập trong SGK bài 19 Phương trình đường thẳng thuộc Chương 7: Phương pháp tọa độ trong mặt phẳng.

Toán 10 Kết nối tri thức trang 34 được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán lớp 10. Giải Toán lớp 10 trang 34 Kết nối tri thức tập 2 sẽ là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn. Vậy sau đây là trọn bộ bài giải Toán 10 bài 19: Phương trình đường thẳng mời các bạn cùng theo dõi.

Trả lời Hoạt động Toán 10 Bài 19

Hoạt động 1

Cho vectơ overrightarrow n  ne overrightarrow 0 và điểm A. Tìm tập hợp những điểm M sao cho overrightarrow {AM} vuông góc với overrightarrow n.

Tham khảo thêm:   Tiếng Anh 9 Unit 1: Từ vựng Then and now - Chân trời sáng tạo

Gợi ý đáp án

Tập hợp tất cả những điểm M để overrightarrow {AM} vuông góc với overrightarrow n là đường thẳng qua A và vuông góc với giá của vectơ overrightarrow n.

Hoạt động 2

Trong mặt phẳng tọa độ, cho đường thẳng Delta đi qua điểm Aleft( {{x_o};{y_o}} right) và có vectơ pháp tuyến overrightarrow n {rm{ }} = left( {a;{rm{ }}b} right). Chứng minh rằng điểm Mleft( {x;y} right) thuộc Delta khi và chỉ khi:

aleft( {x - {x_o}} right) + bleft( {y - {y_o}} right) = 0.

Gợi ý đáp án

Gọi Mleft( {x;y} right)

Ta có: overrightarrow {AM}  = left( {x - {x_o};y - {y_o}} right),overrightarrow n  = left( {a;b} right)

M in Delta Leftrightarrow overrightarrow {AM}  bot overrightarrow n

Hay overrightarrow {AM} .overrightarrow n  = 0 Leftrightarrow aleft( {x - {x_o}} right) + bleft( {y - {y_o}} right) = 0 (ĐPCM).

Giải Toán 10 trang 34 Kết nối tri thức – Tập 2

Bài 7.1 trang 34

Trong mặt phẳng tọa độ cho overrightarrow{n}(2;1), overrightarrow{v}(3; 2), A(1; 3), B(-2; 1)

a. Lập phương trình tổng quát của đường thẳng Delta _{1} đi qua A và có vecto pháp tuyến overrightarrow{n}.

b. Lập phương trình tham số của đường thẳng Delta _{2} đi qua B và có vecto chỉ phương overrightarrow{v}.

c. Lập phương trình tham số của đường thẳng AB.

Gợi ý đáp án

a. Phương trình tổng quát của đường thẳng Delta _{1} đi qua A và có vecto pháp tuyến overrightarrow{n}:

2(x – 1) + 1.(y – 3) = 0 hay 2x + y -5 = 0.

b. Phương trình tham số của đường thẳng Delta _{2} đi qua B và có vectơ chỉ phương overrightarrow{v}.

left{begin{matrix}x=-2+3t\ y=1+2tend{matrix}right.

c. Đường thẳng AB có vectơ chỉ phương: overrightarrow{AB}(-3; -2).

RightarrowChọn vectơ chỉ phương: overrightarrow{u}(3; 2).

Phương trình tham số của đường thẳng AB:left{begin{matrix}x=-2+3t\ y=1+2tend{matrix}right.

Bài 7.2 trang 34

Lập phương trình tổng quát của các trục tọa độ

Gợi ý đáp án

trục Ox: có vecto pháp tuyến overrightarrow{n}(0; 1), đi qua điểm O(0; 0).

Phương trình tổng quát của đường thẳng chứa trục Ox: y = 0

trục Oy: có vecto pháp tuyến overrightarrow{n}(1; 0), đi qua điểm O(0; 0).

Phương trình tổng quát của đường thẳng chứa trục Oy: x = 0

Tham khảo thêm:   Địa lí 6 Bài 14: Biến đổi khí hậu và ứng phó với biến đổi khí hậu Soạn Địa 6 trang 160 sách Chân trời sáng tạo

Bài 7.3 trang 34

Cho hai đường thẳng Delta _{1}:left{begin{matrix}x=1+2t\ y=3+5tend{matrix}right.. và 2x + 3y – 5 = 0.

a. Lập phương trình tổng quát của Delta _{1}

b. Lập phương trình tham số của Delta _{2}

Gợi ý đáp án

a. Delta _{1} có vecto chỉ phương overrightarrow{u}(2;5)

Rightarrow Delta _{1} có vecto pháp tuyến overrightarrow{n}(5;-2)

Phương trình tổng quát: 5(x – 1) – 2(y – 3) = 0, hay 5x – 2y +1 = 0.

b. Delta _{2} có vecto pháp tuyến overrightarrow{n}(2;3)

Rightarrow Delta _{2} có vecto chỉ phương overrightarrow{n}(3;-2)

Delta _{2} đi qua điểm có tọa độ: (1; 1)

Phương trình tham số:left{begin{matrix}x=1+3t\ y=1-2tend{matrix}right.

Bài 7.4 trang 34

Trong mặt phẳng tọa độ, cho tam giác ABC có A(1; 2), B(3; 0) và C(-2; -1).

a. Lập phương trình đường cao kẻ từ A.

b. Lập phương trình đường trung tuyến kẻ từ B.

Gợi ý đáp án

a. Phương trình đường cao kẻ từ A của tam giác ABC nhận vectơoverrightarrow{BC}(-5; -1)  làm vectơ pháp tuyển.

Rightarrow Phương trình đường cao qua A và có vectơ pháp tuyển overrightarrow{BC}(-5; -1) là:

-5(x – 1) – 1.(y – 2) = 0 Hay 5x + y – 7 = 0.

b. Gọi M(x; y) là trung điểm của AC. Suy ra tọa độ điểm M là:

left{begin{matrix}x=frac{1-2}{2}=frac{-1}{2}\ y=frac{2-1}{2}=frac{1}{2}end{matrix}right.Rightarrow Mleft ( frac{-1}{2};frac{1}{2} right )

Phương trình đường trung tuyến kẻ từ B có vectơ chỉ phương là overrightarrow{BM}(-3,5; 0,5)

RightarrowChọn một vecto chỉ phương của đường thẳng là: overrightarrow{u}(-7; 1)

Phương trình tham số của đường thẳng qua B có vecto chỉ phương overrightarrow{u}(-7; 1):

left{begin{matrix}x=3-7t\ y=tend{matrix}right.

Bài 7.5 trang 34

(Phương trình đoạn chắn của đường thẳng)

Chứng minh rằng, đường thẳng đi qua hai điểm A(a; 0) và B(0; b) với ab neq 0 có phương trình là

frac{x}{a}+frac{y}{b}=1

Gợi ý đáp án

Đường thẳng AB có vectơ chỉ phương overrightarrow{AB}(-a; b).

Tham khảo thêm:   Thông tư 14/2012/TT-BTNMT Quy định kỹ thuật điều tra thoái hóa đất

RightarrowĐường thẳng có vecto pháp tuyến là: overrightarrow{n}(b; a).

Rightarrow Phương trình tổng quát của đường thẳng là: b.(x – a) + a.(y – 0) = 0 hay b.x + a. y – ab = 0 (1)

Chia cả hai vế của (1) cho ab neq 0 ta có: frac{x}{a}+frac{y}{b}=1

Vậy đường thẳng đi qua hai điểm A(a; 0) và B(0; b) với ab neq 0 có phương trình là

frac{x}{a}+frac{y}{b}=1

Bài 7.6 trang 34

Theo Google Maps, sân bay Nội Bài có vĩ độ 21,2o Bắc, kinh độ 105,8o Đông, sân bay Đà Nẵng có vĩ độ 16,1o Bắc, kinh độ 108,2o Đông. Một máy bay, bay từ Nội Bài đến sân bay Đà Nẵng. Tại thời điểm t giờ, tính từ lúc xuất phát, máy bay ở vị trí có vĩ độ xo Bắc, kinh độ yo Đông được tính theo công thức

left{begin{matrix}x=21,2-frac{153}{40}t\ y=105,8+frac{9}{5}tend{matrix}right.

a. Hỏi chuyến bay từ Hà Nội đến Đà Nẵng mất mấy giờ?

b. Tại thời điểm 1 giờ kể từ lúc cất cánh, máy bay đã bay qua vĩ tuyến 17 (17o Bắc) chưa?

Gợi ý đáp án

a. Nếu máy bay đến Đà Nẵng thì x = 16,1 và y = 108,2.

Ta có: left{begin{matrix}16,1=21,2-frac{153}{40}t\ 108,2=105,8+frac{9}{5}tend{matrix}right.

Leftrightarrow t=frac{4}{3}

Vậy chuyến bay từ Hà Nội đến Đà Nẵng mất gần 1,33 giờ.

b. Tại thời điểm 1 giờ thì t = 1 thay vào phương trình có:

left{begin{matrix}x=21,2-frac{153}{40}.1=17,375\ y=105,8+frac{9}{5}.1=107,6end{matrix}right.

Vậy tại thời điểm 1 giờ, máy bay đã qua vĩ tuyến 17.

Cảm ơn bạn đã theo dõi bài viết Toán 10 Bài 19: Phương trình đường thẳng Giải SGK Toán 10 trang 34 – Tập 2 sách Kết nối tri thức với cuộc sống của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *