Bạn đang xem bài viết ✅ Toán 6 Luyện tập chung trang 13 Giải Toán lớp 6 trang 13, 14 sách Kết nối tri thức với cuộc sống – Tập 2 ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán lớp 6 Luyện tập chung bao gồm đáp án chi tiết cho từng phần, từng bài tập trong SGK Toán 6 Tập 2 Kết nối tri thức với cuộc sống trang 13, 14.

Với lời giải chi tiết, trình bày khoa học, được biên soạn dễ hiểu, giúp các em nâng cao kỹ năng giải Toán 6, từ đó học tốt môn Toán lớp 6 hơn. Đồng thời, cũng giúp thầy cô nhanh chóng soạn giáo án Luyện tập chung Chương VI: Phân số. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Wikihoc.com:

Giải Toán 6 Kết nối tri thức với cuộc sống trang 14 tập 2

Bài 6.14

Quy đồng mẫu các phân số sau:

frac{5}{7} ;frac{-3}{21}; frac{-8}{15}

Hướng dẫn giải

Để quy đồng mẫu hai hay nhiều phân số có mẫu dương, ta làm như sau:

  • Bước 1: Tìm một bội chung (thường là BCNN) của các mẫu để làm mẫu chung.
  • Bước 2: Tìm thừa số phụ của mỗi mẫu bằng cách chia mẫu chung cho từng mẫu.
  • Bước 3: Nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng.
Tham khảo thêm:   Văn mẫu lớp 10: Thuyết trình về một vấn đề xã hội trong các văn bản đã học mà bạn thấy hứng thú Những bài văn hay lớp 10

Gợi ý trả lời:

Ta có: BCNN (7,21,15 ) = 105

frac{5}{7}=frac{75}{105}

frac{-3}{21}=frac{-15}{105}

frac{-8}{15}=frac{-56}{105}

Bài 6.15

Tính đến hết ngày 31-12-2019, tổng diện tích đất có rừng trên toàn quốc là khoảng 14 600 000 hecta, trong đó diện tích rừng tự nhiên khoảng 10 300 000 hecta, còn lại là diện tích rừng trồng. Hỏi diện tích rừng trồng chiếm bao nhiêu phần của tổng diện tích đất có rừng trên toàn quốc?

(Theo nongnghiep.vn)

Hướng dẫn giải

Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho.

frac{a}{b} = frac{{a:m}}{{b:m}}{text{,        }}m in UCleft( {a;b} right)

Gợi ý trả lời:

Diện tích trồng rừng là: 14 600 000 – 10 300 000 = 4 300 000 (hecta)

Diện tích trồng rừng chiếm số phần của tổng diện tích đất có rừng trên toàn quốc là:

frac{4 300 000}{14 600 000}=frac{43}{146} (phần)

Bài 6.16

Dùng tính chất cơ bản của phân số, hãy giải thích vì sao các phân số bằng nhau:

a. frac{20}{30}frac{30}{45}

b. frac{-25}{35}frac{-55}{77}

Hướng dẫn giải

Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho.

frac{a}{b} = frac{{a:m}}{{b:m}}{text{,        }}m in UCleft( {a;b} right)

Gợi ý trả lời:

a. Ta có:

frac{20}{30}=frac{2}{3}

frac{30}{45}=frac{2}{3}

Nên frac{20}{30}=frac{30}{45}

b. Ta có:

frac{-25}{35}=frac{-5}{7}

frac{-55}{77}=frac{-5}{7}

Nên frac{-25}{35}=frac{-55}{77}

Bài 6.17

Tìm phân số lớn hơn 1 trong các phân số sau rồi viết chúng dưới dạng hỗn số.

frac{15}{8};frac{47}{4};frac{-3}{7}

Bài 6.18

Viết các hỗn số 4frac{1}{13};2frac{2}{5} dưới dạng phân số.

Hướng dẫn giải

Cách chuyển hỗn số sang phân số: afrac{b}{c} = frac{{a.c + b}}{c}

Gợi ý trả lời:

Ta có:

4frac{1}{13}=frac{53}{12}

2frac{2}{5}=frac{12}{5}

Bài 6.19

Tìm số nguyên x, biết: frac{-6}{x}=frac{30}{60}

Hướng dẫn giải

– Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho.

frac{a}{b} = frac{{a:m}}{{b:m}}{text{,        }}m in UCleft( {a;b} right)

– Hai phân số frac{a}{b};frac{c}{d} được gọi là bằng nhau nếu a . d = b . c

Gợi ý trả lời:

Ta có:

− 6.60 = 30. x

x=frac{−6.60}{30}

x = − 12

Bài 6.20

Một bộ 5 chiếc cờ lê như hình bên có thể vặn được 5 loại ốc vít có các đường kính là:

frac{9}{10}cm ; frac{4}{5}cm ; frac{3}{2}cm ; frac{6}{5}cm ; frac{1}{2}cm.

Hướng dẫn giải

Muốn so sánh các phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi so sánh các từ với nhau: Phân số nào có tử lớn hơn thì phân số đó lớn hơn.

Gợi ý trả lời:

Ta có: BCNN (5,2,10) = 10

frac{9}{10}cm

frac{4}{5} =frac{8}{10}cm

frac{3}{2} =frac{15}{10}cm

frac{6}{5} =frac{12}{10}cm

frac{1}{2} =frac{5}{10}cm.

Vì 8 < 10 < 12 < 15 nên frac{3}{2}>frac{6}{5}>frac{4}{5}>frac{1}{2}

Lý thuyết Luyện tập chung trang 13

1. Mở rộng khái niệm về phân số

Định nghĩa về phân số: Với a, b ∈ ℤ, b ≠ 0 , ta gọi frac{a}{b} là một phân số, trong đó a là tửsố (tử), b là mẫu số(mẫu) của phân số.

Tham khảo thêm:   Lời bài hát Chỉ vì quá hy vọng

2. Hai phân số bằng nhau

Hai phân số frac{a}{b}frac{c}{d} được gọi là bằng nhau, viết là frac{a}{b} = frac{c}{d}, nếu a.d = b.c.

Chú ý: Điều kiện a.d = b.c gọi là điều kiện bằng nhau của hai phân số frac{a}{b}frac{c}{d}.

3. Quy đồng mẫu nhiều phân số

Để quy đồng hai hay nhiều phân số ta làm như sau:

  • Bước 1: Tìm một bội chung (thường là BCNN) của các mẫu để làm mẫu chung.
  • Bước 2: Tìm thừa số phụ của mỗi mẫu bằng cách chia mẫu chung cho từng mẫu.
  • Bước 3: Nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng.

4. So sánh hai phân số

a) So sánh hai phân số cùng mẫu

Trong hai phân số cùng một mẫu dương, phân số nào có tử lớn hơn thì phân số đó lớn hơn.

b) So sánh hai phân số không cùng mẫu

Muốn so sánh hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi so sánh các tử số với nhau: phân số nào có tử số lớn hơn thì phân số đó lớn hơn.

Cảm ơn bạn đã theo dõi bài viết Toán 6 Luyện tập chung trang 13 Giải Toán lớp 6 trang 13, 14 sách Kết nối tri thức với cuộc sống – Tập 2 của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *