Bạn đang xem bài viết ✅ Toán 10 Bài 5: Xác suất của biến cố Giải SGK Toán 10 trang 48 – Tập 2 sách Cánh diều ✅ tại website Wikihoc.com có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Giải Toán 10 Bài 5: Xác suất của biến cố sách Cánh diều là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 48 tập 2.

Giải SGK Toán 10 Bài 5 trang 48 Cánh diều tập 2 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa. Nội dung chi tiết bài Giải Toán 10 Bài 5 trang 48 tập 2 mời các bạn cùng đón đọc tại đây.

Giải SGK Toán 10 trang 48 – Tập 2 sách Cánh diều

Bài 1

Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 2 chiếc thẻ từ trong hộp.

a) Gọi Ω là không gian mẫu trong trò chơi trên. Tính số phần tử của tập hợp Ω.

b) Tính xác suất của biến cố “Tích các số trên hai thẻ là số lẻ”.

Lời giải:

a) Mỗi lần rút ngẫu nhiên đồng thời 2 chiếc thẻ từ trong hộp là một tổ hợp chập 2 của 5 phần tử, do đó không gian mẫu Ω gồm các tổ hợp chập 2 của 5 phần tử.

Vậy số phần tử của tập hợp Ω là n(Ω)=C_{2}^{5} =10 (phần tử).

b) Gọi biến cố A: “Tích các số trên hai thẻ là số lẻ”.

Tham khảo thêm:   Lịch sử 8 Bài 19: Phong trào yêu nước chống Pháp ở Việt Nam từ đầu thế kỉ XX đến năm 1917 Soạn Sử 8 sách Kết nối tri thức trang 86, 87, 88, 89, 90

Tích của hai số là số lẻ khi hai số đó là số lẻ.

Trong 5 thẻ đã cho, các thẻ ghi số lẻ là các thẻ ghi số 1, 3, 5; có 3 thẻ ghi số lẻ.

Lấy hai thẻ ghi số lẻ trong 3 thẻ ghi số lẻ có C_{3}^{2} =3 cách, vậy n(A) = 3.

Vậy xác suất của biến cố A là: P(A)=frac{n(A)}{n(Omega) } =frac{3}{10}

Bài 2

Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4; hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.

a) Tính số phần tử của không gian mẫu.

b) Xác định các biến cố sau:

A: “Tổng các số trên ba tấm bìa bằng 9”;

B: “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp”.

c) Tính P(A), P(B).

Lời giải:

a) Mỗi lần rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp là một tổ hợp chập 3 của 4 phần tử, do đó không gian mẫu Ω gồm các tổ hợp chập 3 của 3 phần tử.

Vậy số phần tử của tập hợp Ω là n(Ω) = C_{4}^{3}= 4 (phần tử).

b) Xét biến cố A: “Tổng các số trên ba tấm bìa bằng 9”.

Ta có: 2 + 3 + 4 = 9.

Vậy chỉ có 1 cách để rút ra 3 tấm bìa có tổng các số trên ba tấm bìa bằng chín.

Do đó A = {(2, 3, 4)}.

Xét biến cố B: “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp”.

Các bộ ba số tự nhiên liên tiếp trong 4 số 1, 2, 3, 4 là: (1, 2, 3); (2, 3, 4).

Vậy B = {(1, 2, 3); (2, 3, 4)}.

c) Từ câu b) ta thấy, số phần tử của biến cố A là 1 hay n(A) = 1.

Do đó, xác suất của biến cố A là P(A)=frac{n(A)}{n(Omega) } =frac{1}{4}.

Số phần tử của biến cố B là 2 hay n(B) = 2.

Do đó, xác suất của biến cố B là P(B)=frac{n(B)}{n(Omega) } =frac{2}{4} =frac{1}{2}

Bài 3

Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:

Tham khảo thêm:   Mẫu đơn xin thôi học chương trình thứ 2 Đơn xin thôi học chương trình thứ 2

a) “Bạn Thảo ngồi ghế đầu tiên”;

b) “Bạn Thảo ngồi ghế đầu tiên và bạn Huy ngồi ghế cuối cùng”.

Lời giải:

Mỗi cách sắp xếp 4 bạn Hoa, Thảo, Dũng, Nam vào 4 ghế đặt theo hàng dọc là một hoán vị của 4 phần tử.

Do đó không gian mẫu Ω là các hoán vị của 4 phần tử, vậy n(Ω) = 4! = 24 (phần tử).

a) Gọi biến cố A: “Bạn Thảo ngồi ghế đầu tiên”.

Ta xếp bạn Thảo ngồi ghế đầu tiên, có 1 cách xếp.

Xếp 3 bạn còn lại vào 3 ghế còn lại, có 3! = 6 cách xếp.

Theo quy tắc nhân, số cách xếp 4 bạn sao cho bạn Thảo ngồi ghế đầu tiên là 1 . 6 = 6 cách xếp hay n(A) = 6.

Vậy xác suất của biến cố A là P(A)=frac{n(A)}{n(Omega) } =frac{6}{24} =frac{1}{4}.

b) Gọi biến cố B: “Bạn Thảo ngồi ghế đầu tiên và bạn Huy ngồi ghế cuối cùng”.

Ta xếp bạn Thảo ngồi ghế đầu tiên, có 1 cách xếp.

Xếp bạn Huy ngồi ghế cuối cùng, có 1 cách xếp.

Xếp 2 bạn còn lại vào 2 ghế còn lại, có 2! = 2 cách xếp.

Theo quy tắc nhân, số cách xếp 4 bạn sao cho bạn Thảo ngồi ghế đầu tiên và bạn Huy ngồi ghế cuối cùng là 1 . 1 . 2 = 2 cách xếp hay n(B) = 2.

Vậy xác suất của biến cố B là P(B)=frac{n(B)}{n(Omega) } =frac{2}{24}=frac{1}{12}

Bài 4

Có 10 bông hoa màu trắng, 10 bông hoa màu vàng và 10 bông hoa màu đỏ. Người ta chọn ra 4 bông hoa từ các bông hoa trên. Tính xác suất của biến cố “Bốn bông hoa chọn ra có cả ba màu”.

Lời giải:

Tổng số bông hoa là: 10 + 10 + 10 = 30 (bông).

Mỗi lần chọn 4 bông hoa từ 30 bông hoa cho ta một tổ hợp chập 4 của 30 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 4 của 30 phần tử và .

Gọi biến cố H: “Bốn bông hoa chọn ra có cả ba màu”.

Việc chọn 4 bông hoa có cả ba màu là thực hiện một trong ba khả năng sau:

Tham khảo thêm:   Tuyển tập bài tập Toán lớp 9 học kì 1 Tài liệu ôn tập lớp 9 môn Toán

– Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ;

– Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ;

– Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ;

• Xét khả năng thứ nhất: Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ.

Có 10 cách chọn 1 bông hoa màu trắng.

Có 10 cách chọn 1 bông hoa màu vàng.

C_{10}^{2} cách chọn 2 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ là 10 . 10 . C_{10}^{2}= 4 500.

• Xét khả năng thứ hai: Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ.

Có 10 cách chọn 1 bông hoa màu trắng.

C_{10}^{2} cách chọn 2 bông hoa màu vàng.

Có 10 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ là 10 . C_{10}^{2}. 10 = 4 500.

• Xét khả năng thứ ba: Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ.

C_{10}^{2} cách chọn 2 bông hoa màu trắng.

Có 10 cách chọn 1 bông hoa màu vàng.

Có 10 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ là C_{10}^{2}. 10 . 10 = 4 500.

Theo quy tắc cộng, số cách chọn 4 bông hoa đủ cả ba màu là: 4 500 + 4 500 + 4 500 = 13 500.

Vì thế, n(H) = 13 500.

Vậy xác suất của biến cố H: “Bốn bông hoa chọn ra có cả ba màu” là

P(H)=frac{n(H)}{n(Omega) } =frac{13500}{C_{40}^{3} }=frac{100}{203}

Cảm ơn bạn đã theo dõi bài viết Toán 10 Bài 5: Xác suất của biến cố Giải SGK Toán 10 trang 48 – Tập 2 sách Cánh diều của Wikihoc.com nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.

 

About The Author

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *